Ljupčo Pejov, Gligor Jovanovski


The main aim of this topical review is to provide a concise but yet complete overview of the research that has been done in the field of low-lying crystalline water bending vibrations. Both theoretical and experimental work in the field is reviewed, and the most important dilemmas and obstacles hampering a direct explanation of the phenomenon are outlined. The present status in this field is also overviewed and clarified. While this topical review has mostly been focused on crystalline water molecules in crystalline hydrates and their vibrational properties, also some other interest-ing and exciting systems that have recently attracted the attention of the scientific community are covered. These in-cluded water absorbed on surfaces as well as water at the air-water interfaces.


crystalline water; crystalline hydrates; water bending vibrations; IR spectroscopy; quantum theory

Full Text:



P. Jungwirth, Biological water or rather water in biology?, J. Phys. Chem. Lett., 6 (2015) pp. 2449‒2451.

D. Zhong, S. K. Pal, A. H. Zewail, Biological water: A critique, Chem. Phys. Lett., 503 (2011) pp. 1‒11.

F. Despa, Biological water: Its vital role in macro-molecular structure and function., Ann. N. Y. Acad. Sci., 1066 (2005) pp. 1‒11.

Y. Gao, B. Xu, Probing thermal conductivity of fullerene C60 hosting a single water molecule, J. Phys. Chem. C, 119 (2015) pp. 20466‒20473.

K. Kurotobi, Y. Murata, A single molecule of water encapsulated in fullerene C60, Science, 333 (2011) pp. 613‒616.

A. B. Farimani, Y. Wu, N. R. Aluru, Rotational motion of a single water molecule in a buckyball, Phys. Chem. Chem. Phys., 15 (2013) pp. 17993‒18000.

B. Meier, S. Mamone, M. Concistre, J. Alonso-Valdesueiro, A. Krachmalnicoff, R. J. Whitby, M. H. Levitt, Electrical detection of ortho–para conversion in fullerene-encapsulated water, Nature Comm., 6 (2015) pp. 8112‒8115.

S. Mamone, M. Concistre,, E. Carignani, B. Meier, A. Krachmalnicoff, O. G. Johannessen, X. Lei, Y. Li, M. Denning, M. Carravetta, K. Goh, A. J. Horsewill, R. J. Whitby, M. H. Levitt, Nuclear spin conversion of water inside fullerene cages detected by lowtemperature nuclear magnetic resonance, J. Chem. Phys., 140 (2014) 194306 (pp. 1‒12).

B. Xu, X. Chen, Electrical-driven transport of endohedral fullerene encapsulating a single water molecule, Phys. Rev. Lett., 110 (2013) 156103 (pp. 1–5).

D. Marx, A. Chandra, M. E. Tuckerman, Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton, Chem. Rev., 110 (2010) pp. 2174‒2216.

P. B. Petersen, R. J. Saykally, Is the liquid water surface basic or acidic? Macroscopic vs. molecular scale investigations, Chem. Phys. Lett., 458 (2008) pp. 255‒261.

B. Winter, M. Faubel, R. Vácha, P. Jungwirth, Behavior of hydroxide at the water/vapor interface, Chem. Phys. Lett., 474 (2009) pp. 241‒247.

C. J. Mundy, I-F. W. Kuo, M.E. Tuckerman, H-S Lee, D. J. Tobias, Hydroxide anion at the air–water interface, Chem. Phys. Lett., 481 (2009) pp. 2‒8.

N. Agmon, Mechanism of hydroxide mobility, Chem. Phys. Lett., 319 (2000) pp. 247‒252.

M. E. Tuckerman, A. Chandra, D. Marx, Structure and dynamics of OH–(aq), Acc. Chem. Res., 39 (2006) pp. 151‒158.

M. A. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature, 417 (2002) pp. 925‒929.

K. Hermansson, Ph. A. Bopp, D. Spångberg, Lj. Pe-jov, I. Bakò, P. D. Mitev, The vibrating hydroxide ion in water, Chem. Phys. Lett., 514 (2011) pp. 1‒15.

M. F. C. Ladd, W. H. Lee, Crystalline hydrates. II, J. Phys. Chem., 73 (1969) pp. 2033‒2035.

M. F. C. Ladd, W. H. Lee, The thermodynamics of crystalline hydrates, J. Phys. Chem., 69 (1965) pp. 1840‒1843.

K. Hermansson, Ab initio calculations of the funda-mental OH frequency of bound OH− ions, J. Chem. Phys., 95 (1991) pp. 3578‒3588.

K. Hermansson, Electric-field effects on the OH vi-brational frequency and infrared absorption intensity for water, J. Chem. Phys., 99 (1993) pp. 861‒886.

J-H. Choi, M. Cho, Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants, J. Chem. Phys., 138 (2013) 174108 (pp. 1-18).

K. Hermansson, O–H bonds in electric fields: electron densities and vibrational frequency shifts, Chem. Phys. Lett. 233 (1995) pp. 376‒382.

K. Hermansson, H. Tepper, Electric field effects on vibrating polar molecules from weak to strong fields, Mol. Phys., 89 (1996) pp. 1291‒1299.

B. Berglund, J. Lindgren, J. Tegenfeldt, O-H and O-D stretching vibrations in isotopically dilute HDO molecules in some solid hydrates, J. Mol. Struct., 43 (1978) pp. 169‒177.

W. Mikenda, Stretching frequency versus bond distance correlation of O-D(H)⋯Y (Y = N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates, J. Mol. Struct., 147 (1986) pp. 1‒15.

A. Novak, Hydrogen bonding in solids correlation of spectroscopic and crystallographic data, Struct. Bond., 18 (1974) pp. 177‒216.

M. Falk, The frequency of the H-O-H bending fundamental in solids and liquids, Spectrochim. Acta A, 40 (1984) pp. 43‒48.

H. D. Lutz, Bonding and structure of water mole-cules in solid hydrates. Correlation of spectroscopic and structural data, Struct. Bond., 69 (1988) pp. 97‒125.

W. S. Benedict, N. Gailar, E. K. Plyler, Rotation-vibration spectra of deuterated water vapor, J. Chem. Phys., 24 (1956) pp. 1139‒1165.

M. Gailar, F. P. Dickey, The vibration-rotation band ν2 of HDO vapor, J. Mol. Spectrosc., 4 (1964) pp. 1‒15.

C. Furlani, Gazz. Chim. Ital., 88 (1958) p. 65.

G. Sartori, C. Furlani, A. Damiani, On the problem of the vibrational frequencies of water in complexes, J. Inorg. Nucl. Chem., 8 (1958) pp. 119‒125.

J. Sadlej, A. J. Sadlej, Theoretical infrared and Ra-man spectroscopic parameters for H2O and the H2O ⋯ Li+ system, J. Chem. Soc., Faraday Disccuss., 64 (1977) pp. 112‒119.

K. Hermansson, I. Olovsson, S. Lunnell, Cation influence on the structure and electron density of water in some Men+·H2O complexes, Theor. Chim. Acta, 64 (1984) pp. 265‒276.

M. Falk, H. T. Flakus, R. J. Boyd, An ab initio SCF calculation of the effect of wateranion and watercation interactions on the vibrational frequencies of water, Spectrochim. Acta A, 42 (1986) pp. 175‒180.

B. Šoptrajanov, Fac. Sci., Univ. Kiril et Metodij, Skopje, Editions Speciales, Livre 16, Skopje, 1973.

B. Šoptrajanov, Very low H‒O‒H bending frequencies in the infrared spectra of some crystallohydrates, XXVI Colloquium Spectroscopicum Internationale, Sofia, Vol. V (1989), pp. 71‒80.

M. Trpkovska, B. Šoptrajanov, Infrared spectra of Cu(II) sulfate monohydrate, XXVI Colloquium Spectroscopicum Internationale, Sofia, Vol. II (1989), p. 167.

A. Grodzicki, P. Piszczek, A new interpretation of abnormal shift of water molecules' bending vibration frequencies in kieserite family monohydrates, J. Mol. Struct., 443 (1998) pp. 141‒147.

B. Šoptrajanov, Very low H–O–H bending frequen-cies. I. Overview and infrared spectra of NiKPO4·H2O and its deuterated analogues, J. Mol. Struct., 555 (2000) pp. 21‒30.

Lj. Pejov, B. Šoptrajanov, G. Jovanovski, Very low H–O–H bending frequencies. II. Quantum chemical study of the water bending potential in compounds of the MKPO4·H2O type, J. Mol. Struct., 563-564 (2001) pp. 321‒327.

B. Šoptrajanov, G. Jovanovski, Lj. Pejov, Very low H–O–H bending frequencies. III. Fourier transform infrared study of cobalt potassium phosphate monohydrate and manganese potassium phosphate monohydrate, J. Mol. Struct., 613 (2002) pp. 47‒54.

B. Šoptrajanov, V. Stefov, I. Kuzmanovski, G. Jo-vanovski, H. D. Lutz, B. Engelen, Very low H–O–H bending frequencies. IV. Fourier transform infrared spectra of synthetic dittmarite, J. Mol. Struct., 613 (2002) pp. 7‒14.

B. Šoptrajanov, Lj. Pejov, G. Jovanovski, V. Stefov, Very low HOH bending vibrations. V. Quantum chemical study of water bending vibra-tions in MgKPO4·H2O, J. Mol. Struct., 706 (2004) pp. 101‒106.

GRAMS32 for Microsoft Windows, Ver. 4.10, Galactic Industries Corp., 1991–1996.[47] R. Kevorkyants, A. V. Rudakova, Y. V. Chizov, K. M. Bulanin, The origin of 1560 cm–1 band in experimental IR spectra of water adsorbed on TiO2 surface: Ab initio assessment, Chem. Phys. Lett., 662 (2016) pp. 97‒101.

Lj. Pejov, M. Ristova, Z. Zdravkovski, B. Šop-trajanov, Ab initio quantum chemical and experimental study of structure, harmonic vibrational frequencies and internal Ph-SO3 torsion of benzenesul-fonate anion, J. Mol. Struct., 524 (2000) pp. 179‒188.

Lj. Pejov, M. Ristova, B. Šoptrajanov, A gradient-corrected density functional study of structure, harmonic vibrational frequencies and charge distribu-tion of benzenesulfonate anion on the groundstate potential energy surface, J. Mol. Struct., 555 (2000) pp. 341‒349.

F. Weinhold and J. E. Carpenter, in: The Structure of Small Molecules and Ions, Ed. R. Naaman and Z. Vager (Plenum, 1988) pp. 227‒236.

J. Fraissard, J. J. Étienne, Bull. Soc. Fr. Mineral. Cristallogr., 90 (1967) p. 162.

G. Jovanovski, S. Pocev, B. Kaitner, Crystal structure of magnesium potassium phosphate monohydrate (MgKPO4·H2O), Bull. Chem. Technol. Mace-donia, 16 (1997) pp. 59‒63.

T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1977) pp. 1‒28.

P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations – potentials for the transitionmetal atoms Sc to Hg, J. Chem. Phys., 82 (1985) pp. 270‒283.

H. B. Schlegel, Optimization of Equilibrium Geometries and Transition Structures, J. Comp. Chem., 3 (1982) pp. 214‒218.

R. F. W. Bader, Atoms in Molecules - A Quantum Theory, Oxford University Press, Oxford, 1990.

M. J. Frisch et al, Gaussian 03, Revision C.02, Gaussian, Inc. Wallingford CT, 2004.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38 (1988) pp. 3098‒3100.

C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) pp. 785‒789.

A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolec-ular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 88 (1988) pp. 899‒926.

DOI: http://dx.doi.org/10.20903/csnmbs.masa.2017.38.1.102


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
mail: manu@manu.edu.mk
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.