RESULTS OF INDOOR RADON MEASUREMENTS IN THE REPUBLIC OF MACEDONIA: – A REVIEW –

Zdenka Stojanovska, Blažo Boev, Ivan Boev

Abstract


Radon and its short lived decay products accumulated in indoor environment are the main source of public exposure to natural radiations. The health effects as well as a great number of natural and artificial factors affecting the radon accumulation in indoor environments are some of the motives for the scientific interest in radon issue. Following this global trend, many studies of indoor radon in the Balkan region, including the Republic of Macedonia have been conducted in the last decade. This paper is an overview of the published papers regarding indoor radon concentration measurements with nuclear track detectors in the Republic of Macedonia. It gives basic information about the spatial and temporal variability of indoor radon over the territory of the country, following by a description of the some factors which affect its variations. This review attempts: to organize available indoor radon results in order to show clear picture of the so far conducted surveys; to highlight the need for continuation of more extensive radon investigation in workplaces; to motivate the building professionals to create as much as possible mitigation methods for indoor radon reduction, to motivate the health professionals for epidemiological studies etc.

Keywords


: indoor radon; spatial variations; temporal variations; geology; building characteristics

Full Text:

PDF

References


F. Bochicchio, Z. S. Žunić, C. Carpentieri, et al., Radon in indoor air of primary schools: a systematic survey to evaluate factors affecting radon concentration levels and their variability, Indoor Air, 24 (2014), pp. 315–326.

P. Bossew, Z. S. Žunić, Z. Stojanovska et al., Geographical distribution of the mean radon concentrations in primary schools of Southern Serbia - application of geostatistical methods, J Environ. Radioact., 127 (2013), pp. 141–148.

P. Bossew, Z. Stojanovska, Z. S. Žunić et al., Prediction of indoor radon risk from radium concentration in soil: Republic of Macedonia case study, Rom. J. Phys., 58 (2013), pp. 29–43.

C. Carpentieri, Z. S. Žunić, V. Carelli et al., Assessment of long-term radon concentration measurement precision in field conditions (Serbian schools) for a survey carried out by an

international collaboration, Radiat. Prot. Dosim., 145 (2011), pp. 305–311.

Census of Population, Households and Dwellings in the Republic of Macedonia. Republic of Macedonia State Statistical Office, 2002.

A. Clouvas, G. Takoudis, S. Xanthos et al., Indoor radon measurements in areas of Northern Greece with relatively high indoor radon concentrations, Radiat. Prot. Dosim., 136 (2) (2009), pp. 127–131.

Z. Ćurguz, Z. S. Žunić, T. Tollefsen et al., Active and passive radon concentration measurements and first-step mapping in schools of Banja Luka, Republic of Srpska, Rom. J. Phys., 58 (2013), pp. 90–98.

Z. Ćurguz, Z. Stojanovska, Z. S. Žunić et al., Longterm

measurements of radon, thoron and their airborne progeny in 25 schools in Republic of Srpska, J. Environ. Radioact., 148 (2015), pp.163–169.

S. Darby, D. Hill, A. Auvinen et al., Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. 2005; BMJ 330.7485 223-0.

L. Gulan, G. Milić, P. Bossew et al., Field experience on indoor radon, thoron and their progenies with solid-state detectors in a survey of Kosovo and Metohija (Balkan region). Radiat. Prot. Dosim., 152 (1–3) (2012), pp. 189–197.

L. Gulan, F. Bochicchio, C. Carpentieri et al., High annual radon concentration in dwellings and natural radioactivity content in nearby soil in some rural areas of Kosovo and Metohija (Balkan region), Nucl. Technol. Radiat., 28 (1) (2013), pp. 60–67.

K. Ivanova, Z. Stojanovska, V. Badulin et al., Pilot survey of indoor radon in the dwellings of Bulgaria, Radiat. Prot. Dosim., 157 (4) (2013), pp. 594–599.

K. Ivanova, Z. Stojanovska, M. Tsenova et al., Measurement of indoor radon concentration in kindergartens in Sofia, Bulgaria, Radiat. Prot. Dosim., 162 (1–2):2014; pp. 163–166.

K. Ivanova, Z. Stojanovska, V. Badulin et al., Screening for risk assessment around closed uranium mining sites, Radioprotection, 51 (3) (2016), pp. 193–198.

P. Kolarž, J. Vaupotič, I. Kobal et al., Thoron, radon and air ions spatial distribution in indoor air, J. Environ. Radioact., 173 (2017), pp. 70–74.

B. Kunovska, K. Ivanova, Z. Stojanovska et al., Measurements of radon concentration in soil gas of urban areas, Bulgaria, Rom. J. Phys., 58 (2013), pp. 172–179.

R. Mishra, Z. S. Žunić, G. Venoso et al., An evaluation of thoron (and radon) equilibrium factor close to walls based on long-term measurements in dwellings, Radiat. Prot. Dosim., 160 (1–3) (2014), pp.164–168.

G. Nafezi, A. Gregorič, J. Vaupotič et al., Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium, Radiat. Prot. Dosim., 158 (3) (2014), pp. 331–339.

D. Nikolopoulos, S. Kottou, A. Louizi et al., Factors Affecting Indoor Radon Concentrations of Greek Dwellings through Multivariate Statistics - First Approach., J. Phys. Chem. Biophys., 4 (2014), p. 145.

J. M. Stajić, B. Milenković, D. Nikezić, Radon concentrations in schools and kindergartens in Kragujevac City, Central Serbia, CSAWAC, 43 (10) (2015), pp. 1357–1442.

Z. Stojanovska, J. Januseski, B. Boev et al., Indoor exposure of population to radon in the FYR of Macedonia, Radiat. Prot. Dosim., 148(2) (2011a), pp. 162–167.

Z. Stojanovska, J. Januseski, P. Bossew et al., Seasonal indoor radon concentration in FYR of Macedonia, Radiat. Meas., 46 (6–7) (2011b), pp. 602–610.

Z. Stojanovska, J. Januseski, B. Boev et al., Indoor radon and soil radioactivity in Krusevo, Republic of Macedonia, Geologica Macedonica, 3 (2012), pp. 331–336.

Z. Stojanovska, P. Bossew, S. Tokonami et al., National survey of indoor thoron concentration in FYR of Macedonia (continental Europe - Balkan region), Radiat. Meas., 49(1) (2013), pp. 57–66.

Z. Stojanovska, Z. S. Žunić, P. Bossew et al., Results from time integrated measurements of indoor radon, thoron and their decay product concentrations in schools in the Republic of Macedonia, Radiat. Prot. Dosim., 162 (1–2)

(2014), pp. 152–156.

Z. Stojanovska, B. Boev, Z. S. Žunić et al., Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments, Radiat. Environ.

Biophys., 55(2) (2016a), pp. 171–183.

Z. Stojanovska, B. Boev, Z. S. Žunić et al., Results of radon CR-39 detectors exposed in schools due two different long-term periods, Nukleonika, 61(3) (2016b), pp. 385–389.

Z. Stojanovska, K. Ivanova, P. Bossew et al., Prediction of long-term indoor radon concentration based on short-term measurements, Nucl. Technol. Radiat. 32 (1) (2017), pp. 77–84.

J. Vaupotič, I. Celikovic, N. Smrekar, Z. S. Žunić, I. Kobal, Concentrations of 222Rn and 220Rn in Indoor Air, Acta Chimica Slovеnica 55 (2008), pp. 160–165.

J. Vaupotič, Radon in kindergartens and schools – a review. In Z. Li, & Ch. Feng (Eds.), Handbook of radon: properties applications and health New York: Nova Science Publishers. 2012; 477–524.

J. Vaupotič, T. Streil, S. Tokonami et al., Diurnal variations of radon and thoron activity concentrations and effective doses in dwellings in Niska Banja, Radiat. Prot. Dosim., 157 (2013), pp. 375–382.

B. Vucković, L. Gulan, B. Milenković et al., Indoor radon and thoron concentrations in some

towns of central and South Serbia, J. Environ. Manage., 183 (3) (2016), pp. 938–944.

D. Vuchkov, K. Ivanova, Z. Stojanovska et al., Radon measurement in schools and kindergartens (Kremikovtsi Municipality, Bulgaria), Rom. J. Phys, 58 (2013), pp. 328–335.

UNSCEAR, 2000. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effect of Atomic Radiation 2000. United Nations, New York.

World Health Organization. Handbook on Indoor Radon: A Public Health Perspective. WHO Press, Geneva. ISBN 978 92 4 154767 3: Eds. Zeeb, H. and Shannoun, F. 2009.

I. Yarmoshenko, A. Vasilyev, G. Malinovsky et al., Variance of indoor radon concentration: Major influencing factors, Sci Total Environ, 541 (2016), pp. 155–160.[37] Z. S. Žunić, I. Yarmoshenko, A. Birovljev et al., Radon Survey in the High Natural Radiation Region of Niska Banja, Serbia, J Environ. Radioact., 92(3) (2007), pp. 165–174.

Z. S. Žunić, I. Celikovic, S. Tokonami et al., Collaborative investigations on thoron and radon in some rural communities of Balkans, Radiat Prot Dosim., 141 (2010), pp. 346–350.

Z. S. Žunić, C. Carpentieri, Z. Stojanovska et al., Some results of a radon survey in 207 Serbian schools, Rom. J. Phys, 58 (2013), pp. 320–327.

Z. S. Žunić, P. Ujic, L. Nad et al., High variability of indoor radon concentrations in uraniferous bedrock areas in the Balkan region, Appl. Radiat. Isotop., 94 (2014), pp. 328–337.

Z. S. Žunić, P. Bossew, F. Bochicchio et al., The relation between radon in schools and in dwellings: A case study in a rural region of Southern Serbia, J. Environ. Radioact., 167(1) (2017a;), pp. 188–200.

Z. S. Žunić, Z. Stojanovska, N. Veselinović et al., Indoor radon, thoron and their progeny concentrations in high thoron rural Serbia environments. Radiat Prot Dosim., 2017b. DOI: doi.org/10.1093/rpd/ncx167.




DOI: http://dx.doi.org/10.20903/csnmbs.masa.2017.38.2.109

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
mail: manu@manu.edu.mk
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.