Aleksandra Ivanoska-Dacikj, Gordana Bogoeva-Gaceva, Srećko Valić


Electron spin resonance (ESR) was used as a new method to analyze the synergy between two nanofillers dif-ferent by nature, form and rigidity dispersed in natural rubber matrix. Natural rubber (NR) nanocomposites loaded with fixed amount of carbon nanotubes (2 parts per hundred of rubber parts; phr) and various amounts of expanded organically modified montmorillonite (EOMt, 4–20 phr) were investigated. The dependence of the double integral of the resonance spectra on the amount of EOMt present in the natural rubber was established. Its decrease with an in-creaseof the amount of EOMt confirmed the synergy between these two nanofillers. Also DMA temperature sweep measurements were performed and the cluster-cluster aggregation (CCA) model was used to assess the apparent filler networking energy. The obtained results suggest that the presence of the EOMt above a critical amount strengthens the hybrid-filler networking.


electron spin resonance; carbon nanotubes; organo-montmorillonite; rubber nanocomposites

Full Text:



S. Bandow, Magnetic properties of nested carbon nanostructures studied by electron spin resonance and magnetic susceptibility measurements, J. Appl. Phys., 80 (1996), pp. 1020–1027.

DOI: http://dx.doi.org/10.1063/1.362835

J. N. Coleman, D. F. O'Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, W. J. Blau, Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes, J. Chem. Phys., 113 (2000), pp. 9788–9793.

DOI: http://dx.doi.org/10.1063/1.1322032

P. Petit, E. Jouguelet, J. E. Fischer, A. G. Rinzler, E. E. Smalley, Electron spin resonance and mi-crowave resistivity of single-wall carbon nano-tubes, Phys. Rev. B., 56 (1997), pp. 9275–9278.

DOI: http://dx.doi.org/10.1103/PhysRevB.56.9275

L. C. Venema, V. Meunier, Ph. Lambin, C. Dek-ker, Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B, 61 (2000), pp. 2991–2996.

DOI: http://dx.doi.org/10.1103/PhysRevB.61.2991

T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Mat. Sci. Eng. B-Solid., 119 (2005), pp, 105–118.

DOI: http://dx.doi.org/10.1016/j.mseb.2005.02.046

K. Shen, D. L. Thierney, T. Pietrass, Electron spin resonance of carbon nanotubes under hydrogen ad-sorption, Phys. Rev. B, 68 (2003), pp. 165418.

H. Yokomichi H, Changes in electron spin reso-nance spectra of carbon nanotubes by thermal an-nealing, Vacuum, 3–4 (2004), pp. 677–681.

M. Chipara, F. Iacomi, J. M. Zaleski, J. B. Bai, Electron spin resonance spectroscopy investiga-tions of carbon nanotubes-epoxy composites, J. Optoelectron. Adv. M., 8 (2006), pp. 820–824.

V. Likodimos, S. Glenis, N. Guskos, C. L. Lin, Mag-netic and electronic properties of multiwall carbon nanotubes, Phys. Rev. B, 68 (2003), pp. 045417.

S. Garaj, L. Thien-Nga, R. Gaal, L. Forro, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima, Elec-tronic properties of carbon nanohorns studied by ESR, Phys. Rev. B, 62 (2000), pp. 17115.

M. Chipara, J. M. Zaleski, D. Hui, C. Du, N. Pan, Electron spin resonance on carbon nanotubes–polymer composites, J. Polym. Sci. Polym. Phys. 43 (2005), pp. 3406–3412.

D. Arcon, A. Zorko, P. Cevc, A. Mrzel, M. Rems-kar, R. Dominko, M. Gaberscek, D. Mihailovic, Electron spin resonance of dopedchalcogenide na-notubes, Phys. Rev. B, 67 (2003), pp. 125423.

A. Ivanoska-Dacikj, G. Bogoeva-Gaceva, S. Valić, S. Wießner, G. Heinrich, Benefits of hybrid nano-filler networking between organically modified montmorillonite and carbon nanotubes in natural rubber: experiments and theoretical interpretations, Appl. Clay Sci., 136 (2017), pp. 192–198.

M. Chipara, K. Lozano, R. Wilkins, E. V. Barrera, M. X. Pulikkathara, L. Penia-Para, M. Chipara, ESR investigations on polyethylene-single wall carbon nanotube composites, J. Mater. Sci., 43 (2008), pp. 1228–1233.

DOI 10.1007/s10853-007-2264-8

R. C. Barklie, Characterisation of defects in amor-phous carbon by electron paramagnetic resonance. Diam. Relat. Mater., 12 (2003), pp. 1427–1434.

DOI: 10.1016/S0925-9635(03)00004-9

Y. F. Lan, J. J. Lin, Observation of carbon nano-tube and clay micellelikemicrostructures with dual dispersion property. J. Phys. Chem. A, 113 (2009), pp. 8654–8659. DOI: 10.1021/jp9026805

A. Ivanoska-Dacikj, G. Bogoeva-Gaceva, A. Buza-rovska, Clay improved dispersion of carbon nano-tubes in different solvents, Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 36 (2015), pp. 5–10.

A. Ivanoska-Dacikj, G. Bogoeva-Gaceva, S. Rooj, G. Heinrich, S. Wieβner, Fine tuning of the dy-namic mechanical properties of natural rub-ber/carbon nanotube nanocomposites by organical-ly modified montmorillonite: A first step in obtain-ing high- performance damping material suitable for seismic application, Appl. Clay Sci., 118 (2015), pp. 99–106. DOI: 10.1016/j.clay.2015.09.009

S. Rooj, A. Das, K. W. Stöckelhuber, S. Wieβner, D. Fischer, U. Reuter, G. Heinrich, 'Expanded or-ganoclay' assisted dispersion and simultaneous structural alterations of multiwall carbon nanotube (MWCNT) clusters in natural rubber, Compos. Sci. Technol., 107 (2015) 36–43. DOI: 10.1016/j.compscitech.2014.11.018

M. Klüppel, The role of disorder in filler rein-forcement of elastomers on various length scales, Adv. Polym. Sci., 164 (2003), pp. 1–86.

A. Das, K. W. Stöckelhuber, R. Jurk, M. Saphi-annikova, J. Fritzsche, H. Lorenz, M. Klüppel, G. Heinrich, Modified and unmodified multi-walledcarbon nanotubes in high performance solu-tion-styrene-butadiene and butadiene rubber blends, Polymer 49 (2008), pp. 5276–5283.

DOI: http://dx. doi.org/10.1016/j.polymer.2008.09.031

W. D. Rice, R. T. Weber, A. D. Leonard, J. M. Tour, P. Nikolaev, S. Arepalli, V. Berka, A.-L. Tsai, J. Kono, Enhancement of the electron spin resonance of single-walled carbon nanotubes by oxygen removal, ACS Nano. 6 (2012), pp. 2165–2173. DOI: 10.1021/nn204094s

C. P. Poole, H. A. Farach, Lineshapes. In: Poole, C. P. and Farach, H. A. (eds.), Handbook of Elec-tron Spin Resonance, Volume 2, Springer-Verlag, New York, 1999, pp. 47–67.

K. A. Müller, Spin Resonance in Neutron-Irradiated Graphite. Phys. Rev. 123 (1961), pp. 1550–1552.

DOI: http://dx.doi.org/10.1103/PhysRev.123.1550

F. Beuneu, C. l'Huillier, Modification of multiwall carbon nanotubes by electron irradiation: An ESR study, Phys. Rev. B, 59 (1999), pp. 5945–5949. DOI: http://dx.doi.org/10.1103/PhysRevB.59.5945

G. Heinrich and M. Klüppel, Recent advances in the theory of filler networking in elastomers. In: Lee, K.S. (Ed.), Filled Elastomers Drug Delivery Systems Series: Advances in Polymer Science. Springer, Berlin, 2002, pp. 1–44.

DOI: 10.1007/3-540-45362-8_1

G. Kraus, Mechanical losses in carbon black filled rubbers. J. Appl. Polym. Sci. Symp., 39 (1984), pp. 75–92.

DOI: http://dx.doi.org/10.20903/csnmbs.masa.2018.39.1.117


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
mail: manu@manu.edu.mk
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.