Valentin Mirčeski, Leon Stojanov, Sławomira Skrzypek


This review concerns recent methodological advances of square-wave voltammetry as one of the most sophisticated
members of the pulse voltammetric techniques. Besides addressing recent theoretical works and representatives of
advanced analytical studies, an emphasis is given to a few novel methodological concepts such as kinetic analysis at
constant scan rate, cyclic square-wave voltammetry, multisampling square-wave voltammetry, and electrochemical faradaic
spectroscopy. For the purpose of improving analytical performances of the technique two new methods are proposed
for the first time.


square-wave voltammetry; electrode mechanisms; electrode kinetics INTRODUCTION

Full Text:



V. Mirčeski, Š. Komorsky-Lovrić, M. Lovrić, Square-wave voltammetry: Theory and application, F. Scholz (Ed.), Springer Verlag, Heidelberg, 2007.

G. N. Eccles, Recent advances in pulse, cyclic and square-wave voltammetric analysis, Crit .Rev. Anal. Chem. 22 (1991), pp. 345–380.

D. de Souza, S. A. S. Machado, L. A. Avaca, Square-wave voltammetry. Part I: Theoretical as-pects, Quim. Nova, 26 (2003), pp. 81–89.

Á. Molina, J. González, Pulse Voltammetry in Physical Electrochemistry and Electroanalysis. Theory and Applications, Series: Monographs in Electrochemistry, Fritz Scholz (Ed.), Springer, Ber-lin, 2016.

M. Kalousek, Processes at the dropping electrode with a discontinuously changing potential, Collect. Czech. Chem. Commun., 13 (1948), pp. 105–115.

G. C. Barker, A. W. Gardner, Square-wave polar-ography, Analyst, 117 (1992), pp. 1811–1828.

G. C. Barker, I. L. Jenkins, Square-wave polarog-raphy, Analyst, 77 (1952), pp. 685–696.

G. C. Barker, Square-wave polarography and some related techniques, Anal. Chim. Acta., 18 (1958), pp. 118–131.

J. H. Christie, J. A. Turner, R. A. Osteryoung, Square wave voltammetry at the dropping mercury electrode: Theory, Anal. Chem., 49 (1977), pp. 1899–1903.

J. Osteryoung, J. J. O`Dea, Square-wave voltamme-try, in: Electroanalytical chemistry, A. J. Bard (Ed.), Marcel Dekker, New York, 1986, 14, pp. 209–308.

M. Lovrić, Square-wave voltammetry, in: Electro-analytical Methods, F. Scholz (Ed.) Springer, Ber-lin, 2002.

J. Gonzalez, A. Molina, F. Martinez Ortiz, E. La-borda, Characterization of the electrocatalytic re-sponse of monolayer-modified electrodes with square-wave voltammetry, J. Phys. Chem. C, 116, 20 (2012), pp. 11206–11215.

E. Laborda, A. Molina, Q. Li, C. Batchelor-McAuley, R. G. Compton, Square wave voltamme-try at disc microelectrodes for characterization of two electron redox processes, Phys. Chem. Chem. Phys., 14 (2012), pp. 8319–8327.

A. Molina, J. Gonzalez, E. Laborda, Y. Wang, R. G. Compton, Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes, Phys. Chem. Chem. Phys., 13 (2011), 16748–16755.

Y. Wang, E. Laborda, M. C. Henstridge, F. Martinez-Ortiz, A. Molina, R. G. Compton, The use of differen-tial pulse voltammetries to discriminate between the Butler–Volmer and the simple Marcus–Hush models for heterogeneous electron transfer: The electro-reduction of europium (III) in aqueous solution, J. Electroanal. Chem., 668 (2012), pp. 7–12.

M. C. Henstridge, E. Laborda, R. G. Compton, Asymmetric Marcus–Hush model of electron trans-fer kinetics: Application to the voltammetry of sur-face-bound redox systems, J. Electroanal. Chem., 674 (2012), pp. 90–96.

R. Gulaboski, L. Mihajlov, Catalytic mechanism in successive two-step protein-film voltammetry—Theoretical study in square-wave voltammetry, Bi-ophys. Chem., 155 (2011), pp. 1–9.

R. Gulaboski, M. Lovrić, V. Mirčeski, I. Bogeski, M. Hoth, A new rapid and simple method to deter-mine the kinetics of electrode reactions of biologi-cally relevant compounds from the half-peak width of the square-wave voltammograms, Biophys. Chem., 138 (2008), pp. 130–137.

M. Zhou, S. Gan, L. Zhong, B. Su, L. Niu, Ion transfer voltammetry by a simple two polarized in-terfaces setup, Anal. Chem., 82 (2010), pp. 7857–7860.

D. Krulic, N. Fatouros, Peak heights and peak widths at half-height in square wave voltammetry without and with ohmic potential drop for reversi-ble and irreversible systems, J. Electroanal. Chem., 652 (2011), pp. 26–31.

D. Krulic, N. Fatouros, Square wave voltammetry of concentrated analytes in fully supported solu-tions – Cd(II)/Cd(Hg) couple in NaNO3 medium. J. Electroanal. Chem., 655 (2011), pp. 116–119.

J. Zhang, S. X. Guo, A. M. Bond, J. M. Honey-church, K. B. Oldham, Novel kinetic and back-ground current selectivity in the even harmonic components of Fourier transformed square-wave voltammograms of surface-confined azurin, J. Phys. Chem. B, 109 (2005), pp. 8935–8947.

B. D. Fleming, N. L. Barlow, J. Zhang, A. M. Bond, F. A. Armstrong, Application of power spec-tra patterns in Fourier transform square wave volt-ammetry to evaluate electrode kinetics of surface-confined proteins, Anal. Chem., 78 (2006), pp. 2948–2956.

X. Huang, L. Wang, S. Liao, Method of evaluation of electron transfer kinetics of a surface-confined redox system by means of Fourier transformed square wave voltammetry, Anal. Chem., 80 (2008), pp. 5666–5670.

G. W. C. Milner, L. J. Slee, Analytical applications of the Barker square-wave polarograph. Part III. Orthophosphoric acid as a solvent and base electro-lyte in direct inorganic polarographic analysis, Ana-lyst, 82 (1957), pp. 139–151.

W. F. Kinard, R. H. Philip, R. C. Propst, Analytical applications of Kalousek polarography, Anal. Chem., 39, 13 (1967), pp. 1556–1562.

G. Geerinck, H. Hilderson, C. Vanttulle, F. Ver-beck, Square wave polarography, J. Electroanal. Chem., 5 (1963), pp. 48–56.

R. E. Hamm, Square-Wave Polarograph, Anal. Chem., 30, 3 (1958), pp. 351–354.

B. Y. Kaplan, T. N. Sevastyanova, Advantages of debalance-method in substractive square-wave po-larography, Zh. Anal. Khim., 26 (1971), pp. 1054.

H. Blutstein, A. M. Bond, Fast sweep differential pulse voltammetry at a dropping mercury electrode, Anal. Chem., 48, 2 (1976), pp. 248–252.

M. Kopanica, V. Stara, Fast-scan differential pulse polarography in pre-enriched solution, J. Electro-anal. Chem. 127 (1981), pp. 255–261.

P. W. Alexander, V. Akapongkul, Differential pulse voltammetry with fast pulse repetition times in a flow-injection system with a copper-amalgam elec-trode, Anal. Chim. Acta, 166 (1984), pp. 119–127.

L. Ramaley, W.T. Tan, Single drop square wave polarography, Can. J. Chem. 59, 24 (1981), pp. 3326–3333.

J. Y Hwang, Y. Y. Wang, C.C. Wan, A Theoretical analysis of single drop square‐wave polarography, J. Chin. Chem. Soc., 33 (1986), pp. 302–307.

V. Mirčeski, R. Gulaboski, M. Lovrić, I. Bogeski, R. Kappl, M. Hoth, Square-wave voltammetry: a review on the recent progress, Electroanalysis, 25, 11 (2013), pp. 2411 – 2422.

V. Mirčeski, R. Gulaboski, Recent Achievements in Square-Wave Voltammetry – A Review, Macedo-nian Journal of Chemistry and Chemical Engineer-ing, 33 (2014), pp. 1–12.

M. Geissler, C. Kuhnhardt, Square-wave-Polarographie, VEB Deutscher Verlagfur Grund-stoffindustrie, Leipzig, 1970.

L. Ramaley, M. S. Krause Jr., Theory of square wave voltammetry, Anal. Chem., 41, 11 (1969), pp. 1362–1365.

M. S. Krause Jr., L. Ramaley, Analytical applica-tion of square wave voltammetry, Anal. Chem., 41, 11 (1969), pp. 1365–1369.

E. Laborda, J. González, Á. Molina, Recent ad-vances on the theory of pulse techniques: A mini review, Electrochemistry Communications, 43 (2014), pp. 25–30.

M. Lovrić, Simulation of square wave voltammetry of three electrode reactions coupled by two reversi-ble chemical reactions, J. Electrochem. Sci. Eng., 7, 3 (2017) pp. 119–129.

M. Lovrić, Š. Komorsky-Lovrić, Theory of square wave voltammetry of three step electrode reaction, Journal of Electroanalytical Chemistry, 735 (2014), pp. 90–94

Š. Komorsky-Lovrić, D. Jadreško, M. Lovrić, The-ory of square wave voltammetry of amalgam form-ing ions at spherical electrodes, Electrochimica Ac-ta, 130 (2014), pp. 286–289.

M. Lovrić, D. Jadreško, Š. Komorsky-Lovrić, The-ory of square-wave voltammetry of electrode reac-tion followed by the dimerization of product, Elec-trochimica Acta, 90 (2013), pp.


N. Fatouros, D. Krulic, Conditions for a nearly per-fect match between pulse voltammetry and linear scan voltammetry, Journal of Electroanalytical Chemistry, 817 (2018), pp. 167–175.

J. M. Olmos, A. Molina, E. Laborda, F. Martínez-Ortiz, Effects of unequal diffusion coefficients and coupled chemical equilibria on square wave volt-ammetry at disc and hemispherical microelectrodes, Electrochimica Acta, 176 (2015), pp.


S. N. Vettorelo, F. Garay, Theory of square-wave catalytic adsorptive stripping voltammetry. How to obtain mechanistic information from experimental data, Journal of Electroanalytical Chemistry, 826 (2018), pp. 125–132.

N. Meddings, J. R. Owen, N. Garcia-Araez, A sim-ple, fast and accurate in-situ method to measure the rate of transport of redox species through mem-branes for lithium batteries, Journal of Power Sources, 364 (2017), pp. 148–155.

Parveen, R. Kant, General theory for pulse volt-ammetric techniques at rough electrodes: multistep reversible charge transfer mechanism, Electro-chimica Acta, 220 (2016), pp. 475–485.

L. Shaw, L. Dennany, Applications of electrochem-ical sensors: Forensic drug analysis, Current Opin-ion in Electrochemistry, 3 (2017), pp. 23–28.

V. Jovanovski, S. B. Hočevar, B. Ogorevc, Bismuth electrodes in contemporary electroanalysis, Current Opinion in Electrochemistry, 3 (2017), pp. 114–122.

Y. Liu, Y. Liu, L. Qiao, Y. Liu, B. Liu (in press), Advances in signal amplification strategies for elec-trochemical biosensing, Current Opinion in Elec-trochemistry. DOI: 10.1016/j.coelec.2018.05.001

J. Hoyos-Arbeláez, M. Vázquez, J. Contreras-Calderón, Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review, Food Chemistry, 221 (2017), pp. 1371–1381.

S. Huang, N. Gan, T. Li, Y. Zhou, Y. Cao, Y. Dong, Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy, Talanta, 179 (2018), pp. 28–36.

X. Cao, J. X. Liu , F. Zhang, Z. Wang, H. Liu, L. Lu, A new dual-signalling electrochemical aptasen-sor with the integration of “signal on/off” and “la-beling/label-free” strategies, Sensors and Actuators B: Chemical, 239 (2017), pp. 166–171.

K. Biała , A. S. Mix, K. Bär, P. Orsag, M. Fojta, G. Flechsig, Amplified detection of single base mis-matches with the competing-strand assay reveals complex kinetic and thermodynamic behavior of strand displacement at the electrode surface, Elec-trochimica Acta, 285 (2018), pp. 272–283

N. Tonello, M. B. Moressi, S. N. Robledo, F. D’Eramo, J. M. Marioli, Square wave voltammetry with multivariate calibration tools for determination of eugenol, carvacrol and thymol in honey, Talanta, 158 (2016), pp. 306–314

A. Taleb, X. Yanpeng, P. Dubot, Self-organized gold nanoparticles modified HOPG electrodes: Electrochemical stability and its use for electro-chemical nanosensing applications, Applied Surface Science, 420 (2017), pp. 110–117.

G. D. da Silveira, L. M. de Carvalho, N. Montoya, A. Domenech-Carbó, Solid state electrochemical behavior of organosulfur compounds, Journal of Electroanalytical Chemistry, 806 (2017), pp. 180–190.

V. Mirceski, D. Guziejewski, K. Lisichkov, Electrode kinetic measurements with square-wave voltammetry at a constant scan rate, Electrochimica Acta, 114 (2013), pp. 667–673.

D. Guziejewski, V. Mirceski, D. Jadresko, Measur-ing the electrode kinetics of surface confined elec-trode reactions at a constant scan rate, Electroanal-ysis, 27 (2015), pp. 67–73.

V. Mirčeski and M. Lovrić, Split square-wave volt-ammograms of surface redox reactions, Electroa-nalysis, 9 (1997), pp. 1283–1287.

V. Mirčeski, S. Smarzewska, D. Guziejewski, Measuring the electrode kinetics of vitamin B2 at a constant time window of a square wave voltammet-ric experiment, Electroanalysis, 28 (2016), pp. 385–393.

C. Bonazzola , G. Gordillo, Advanced analysis for electrode kinetic studies of surface reactions by ap-plying square-wave voltammetry, Electrochimica Acta, 213 (2016), pp. 613–619.

V. Mirčeski, E. Laborda, D. Guziejewski, R. G. Compton, A new approach to electrode kinetic measurements in square-wave voltammetry. Ampli-tude-based quasireversible maximum, Anal. Chem. 85 (2013), pp. 5586–5594.

D. Jadreško, M. Zelić, M. Lovrić, A formal scan rate in staircase and square-wave voltammetry, Journal of Electroanalytical Chemistry, 645 (2010), pp. 103–108.

V. Mirčeski, D. Guziejewski, M. Bozem, I. Bog-eski, Characterizing electrode reactions by mul-tisampling the current in square-wave voltammetry, Electrochim. Acta, 213 (2016), pp. 520–528.

X. Cheng, G. Pu, Cyclic Square Wave Voltammetry: Theory and Experimental, Anal. Lett., 20 (1987), pp. 1511–1519.

M. A. Mann, L. A. Bottomley, Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions, Langmuir, 31 (2015) pp. 9511–9520.

C. J. Helfrick Jr, L. A. Bottomley, Cyclic square wave voltammetry of single and consecutive re-versible electron transfer reactions, Anal. Chem., 81, 21 (2009), pp. 9041–9047.

C. John, Helfrick Jr., M. A. Mann, A. Lawrence, Bottomley diagnostic criteria for the characteriza-tion of electrode reactions with chemical reactions following electron transfer by cyclic square wave voltammetry, Electrochimica Acta, 205 (2016), pp. 20–28.

A. Molina, M. M. Moreno, C. Serna, M. Lopez-Tenes, J. Gonzalez, N. Abenza, Study of multicen-ter redox molecules with square wave voltammetry, J. Phys. Chem. C. 111 (2007), pp. 12446–12453.

M. Zelić, M. Lovrić, Isopotential points in reverse square-wave voltammetry, J. Electroanal. Chem., 637 (2009), pp. 28–32.

M. Lovrić, D. Jadreško, Theory of square-wave voltammetry of quasireversible electrode reactions using an inverse scan direction, Electrochim. Acta, 55 (2010), 948–951.

M. Lovrić, Š. Komorsky-Lovrić, Theory of reverse scan square-wave voltammetry influenced by the kinetics of reactant adsorption, Cent. Eur. J. Chem. 8 (2010), pp. 513–518.

M. C. Henstridge, E. Laborda, N. V. Rees, R. G. Compton, Marcus–Hush–Chidsey theory of elec-tron transfer applied to voltammetry: A review, Electrochim. Acta, 84 (2012), pp. 12–20.

D. Jadreško, D. Guziejewski, V. Mirčeski, Electro-chemical Faradaic Spectroscopy, Chem. Electro-Chem, 5 (2018), pp. 187–194.

W. M. Smit, M. D. Wijnen, Square wave electroly-sis. I. The

cyclic potential‐step method, Recueil, 79 (1960), pp. 5–21.

W. M. Smit, M. D. Wijnen, Square wave electroly-sis III. Apparatus for the cyclic potential‐step and cyclic current‐step methods, Recueil, 79 (1960), pp. 203–215.

W. M. Smit, M. D. Wijnen, Square wave electroly-sis IV. Results and discussion, Recueil, 79 (1960), pp. 289–312.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.