Života Selaković, Bogdan Šolaja


Filoviruses are virulent pathogens that cause deadly haemorrhagic fever in humans and non-human primates. There is currently no approved drug or vaccine to tackle this disease. Two vaccine platforms that use adenovirus vectors have completed phase I studies, while a recombinant vesicular stomatitis virus-based vaccine has successfully complet-ed a phase III trial. Intricate macromolecular therapeutics have also been developed, most notably those based on anti-bodies or interfering RNA or RNA-surrogates. Most small molecules active against filoviruses have not yet advanced to clinical trials, except favipiravir, which was proven to be safe, and GS-5734, which has entered trials.


ebola; Marburg; hemorrhagic fever; vaccines; small molecules

Full Text:


References negative-sense-rna-viruses-2011/w/negrna_viruses/ 197/filoviridae (accessed on 4th April, 2018).

M. A. Bwaka, M-J. Bonnet, P. Calain, R. Cole-bunders, A. De Roo, Y. Guimard, K. R. Katwiki, K. Kibadi, M. A. Kipasa, K. J. Kuvula, B. B. Mapan-da, M. Massamba, K. D. Mupapa, J-J. Muyembe-Tamfum, E. Ndaberey, C. J. Peters, P. E. Rollin, E. Van den Ende, Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: clinical obser-vations in 103 patients. J. Infect. Dis., 179 (1999), S1 – S7.

R. Siegert, H. L. Shu, W. Slenczka, D. Peters, G. Müller. Zur Ätiologie einer unbekannten, von Af-fen ausgegangenen menschlichen Infektionskrank-heit, Deutsche Medizinische Wochenschrift, 92 (1967), pp. 2341–2343.

K. M. Johnson, P. A. Webb, J. V. Lange, F. A. Murphy, Isolation and partial characterisation of a new virus causing haemorrhagic fever in Zaire. Lancet, 309 (1977), pp. 569–571.

E. T. W. Bowen, G. Lloyd, W. J. Harris, G. S. Platt, A. Baskerville, E. E Vella. Viral haemorrhagic fe-ver in southern Sudan and northern Zaire. Prelimi-nary studies on the aetiological agent, Lancet, 309 (1977), 571–573.

A. Negredo, G. Palacios, S. Vázquez-Morón, F. L. González, H. N. Dopazo, F. Molero, J. Juste, J. Quetglas, N. Savji, M. de la Cruz Martínez, J. E. Herrera, M. Pizarro, S. K. Hutchison, J. E. Eche-varría, W. I. Lipkin, A. Tenorio, Discovery of an Ebolavirus-Like Filovirus in Europe, PLoS Patho-gens, 7 (2011), e1002304. chronology.html (accessed on 4th April, 2018) (accessed on 4th April, 2018) (accessed on 4th April, 2018)

S. M. Jones, U. Stroher, L. Fernando, X. Qiu, J. Alimonti, P. Melito, M. Bray, H. D. Klenk, Feld-mann, H. Assessment of a vesicular stomatitis vi-rus-based vaccine by use of the mouse model of Ebola virus hemorrhagic fever. J. Infect Dis, 196 (2007), S404–12.

T. Lambe, G. Bowyer, K. J. Ewer, A review of Phase I trials of Ebola virus vaccines: what can we learn from the race to develop novel vaccines? Phil. Trans. R. Soc. B, 372 (2017), 20160295.

G. Wong, J. Audet, L. Fernando, H. Fausther-Bovendo, J. B. Alimonti, G. P. Kobinger, X. Qiu, Immunization with vesicular stomatitis virus vac-cine expressing the Ebola glycoprotein provides sustained long-term protection in rodents. Vaccine, 32 (2014), pp. 5722–5729.

E. de Wit, A. Marzi, T. Bushmaker, D. Brining, D. Scott, J. A. Richt, T. W. Geisbert, H. Feldmann, Safety of recombinant VSV–Ebola virus vaccine vector in pigs. Emerg Infect Dis., 21 (2015), pp. 702–704.

S. M. Jones, H. Feldmann, U. Ströher, J. B. Geis-bert, L. Fernando, A. Grolla, H. D. Klenk, N. J. Sullivan, V. E. Volchkov, E. A. Fritz, K. M. Dad-dario, L. E. Hensley, P. B. Jahrling, T. W. Geisbert, Live attenuated recombinant vaccine protects non-human primates against Ebola and Marburg virus-es. Nat Med., 11 (2005), pp. 786–790.

H. Feldmann, S. M. Jones, K. M. Daddario-DiCaprio, J. B. Geisbert, U. Ströher, A. Grolla, M. Bray, E. A. Fritz, L. Fernando, F. Feldmann, L. E. Hensley, T. W. Geisbert, Effective post-exposure treatment of Ebola infection. PLoS Pathog., 3 (2007), e2.

T. W. Geisbert, K. M. Daddario-DiCaprio, M. G. Lewis, J. B. Geisbert, A. Grolla, A. Leung, J. Para-gas, L. Matthias, M. A. Smith, S. M. Jones, L. E. Hensley, H. Feldmann, P. B. Jahrling, Vesicular stomatitis virus-based Ebola vaccine is well-tolerated and protects immunocompromised non-human primates, PLOS Pathog., 4 (2008), e1000225.

A. Marzi, S. J. Robertson, E. Haddock, F. Feld-mann, P. W. Hanley, D. P. Scott, J. E. Strong, G. Kobinger, S. M. Best, H. Feldmann, VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain, Science, 349 (2015), pp. 739–742.

K. J. Chappell, D. Watterson, Fighting Ebola: A window for vaccine re-evaluation? PLoS Pathog., 13 (2017), e1006037.

J. A. Regules et al., A recombinant vesicular sto-matitis virus Ebola vaccine — preliminary report. N. Engl. J. Med., 376 (2015), pp. 330–341.

S. T. Agnandji et al., Phase 1 trials of rVSV Ebola vaccine in Africa and Europe, N. Engl. J. Med., 374 (2016), pp. 1647–1660.

A. M. Henao-Restrepo et al, Efficacy and effec-tiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!), The Lancet, 389 (2017) pp., 505–518.

J. E. Martin, N. J. Sullivan, M. E. Enama, I. J. Gor-don, M. Roederer, R. A. Koup, R. T. Bailer, B. K. Chakrabarti, M. A. Bailey, P. L. Gomez, C. A. An-drews, Z. Moodie, L. Gu, J. A. Stein, G. J. Nabel, B. S. Graham, A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin Vaccine Immunol., 13 (2006), pp. 1267–1277.

H. Kibuuka et al, Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lan-cet, 385 (2015), pp. 1545–1554.

D. A. Stanley et al., Chimpanzee adenovirus vac-cine generates acute and durable protective immun-ity against ebolavirus challenge, Nat Med., 20 (2014) pp. 1126–1129.

M. D. Tapia et al., Use of ChAd3-EBO-Z Ebola virus vaccine

in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, sin-gle-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis, 16 (2016), pp. 31–42.

J. E. Ledgerwood et al, Chimpanzee Adenovirus vector Ebola vaccine. N. Engl. J. Med., 376 (2017), pp. 928–938.

J. E. Ledgerwood, P. Costner, N. Desai, L. Holman, M. E. Enama, G. Yamshchikov, S. Mulangu, Z. Hu, C. A. Andrews, R. A. Sheets, R. A. Koup, M. Roederer, R. Bailer, J. R. Mascola, M. G. Pau, N. J. Sullivan, J. Goudsmit, G. J. Nabel, B. S. Graham, VRC 205 Study Team. A replication defective re-combinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults, Vaccine, 29 (2010), pp. 304–313.

F. C. Zhu et al., Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: prelimi-nary report of a randomised, double-blind, placebo controlled, phase 1 trial, Lancet, 385 (2015), pp. 2272–2279.

T. W. Geisbert, M. Bailey, L. Hensley, C. Asiedu, J. Geisbert, D. Stanley, A. Honko, J. Johnson, S. Mulangu, M. G. Pau, J. Custers, J. Vellinga, J. Hendriks, P. Jahrling, M. Roederer, J. Goudsmit, R. Koup, N. J. Sullivan, Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors by-pass immunity to Ad5 and protect nonhuman pri-mates against ebolavirus challenge, J. Virol., 85 (2011), pp. 4222–4233.

G. Shukarev, B. Callendret, K. Luhn, M. Douoguih, EBOVAC1 consortium. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Hum Vac-cin Immunother, 13 (2017), pp. 266–270.

R. L. Winslow, I. D. Milligan, M. Voysey, K. Luhn, G. Shukarev, M. Douoguih, M. D. Snape, Immune responses to novel Adenovirus type 26 and modified vaccinia virus Ankara-vectored Ebola vaccines at 1 year, JAMA, 317 (2017), pp. 1075–1077.

T. W. Geisbert et al., Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study, Lancet, 375 (2010) pp. 1896–1905. 07/fda-moves-on-tekmiras-ebola-drug-while-sarep-tas-sits-unused/#4ef9d3e44373 (accessed on 4th April, 2018).

E. P. Thi, C. E. Mire, A. C. H. Lee, J. B. Geisbert, J. Z. Zhou, K. N. Agans, N. M. Snead, D. J. Deer, T. R. Barnard, K. A. Fenton, I. MacLachlan, T. W. Geisbert, Lipid nanoparticle siRNA treatment of Ebola virus Makona infected nonhuman primates. Nature, 521 (2015), pp. 362–365.

J. Dunning et al., Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-arm phase 2 clinical trial, PLoS Med, 13 (2016), e1001997. (accessed on 4th April, 2018)

J. E. Summerton, Morpholino Oligomers: Methods and Protocols, Springer, 2017.

K. L. Warfield, D. L. Swenson, G. G. Olinger, D. K. Nichols, W. D. Pratt, R. Blouch, D. A. Stein, M. J. Aman, P. L. Iversen, S. Bavari, Gene-specific countermeasures against Ebola virus based on anti-sense phosphorodiamidate morpholino oligomers, PLoS Pathog., 2 (2006), e1.

A. E. Heald, P. L. Iversen, J. B. Saoud, P. Sazani, J. S. Charleston, T. Axtelle, M. Wong, W. B. Smith, A. Vutikullird, E. Kaye, Safety and pharmacokinet-ic profiles of phosphorodiamidate morpholino oli-gomers with activity against Ebola virus and Mar-burg virus: Results of two single-ascending-dose studies, Antimicrob. Agents Chemother., 58 (2014), pp. 6639–6647.

A. E. Heald et al., AVI-7288 for Marburg virus in nonhuman primates and humans, N. Engl. J. Med., 373 (2015), pp. 339–348. (accessed on 4th April, 2018)

X. Qiu et al., Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp, Nature, 514 (2014), pp. 47–53.

PREVAIL II Writing Group; Multi-National PRE-VAIL II Study Team; R. T. J. Davey, L. Dodd, M. A. Proschan, J. Neaton, J. Neuhaus Nordwall, J. S. Koopmeiners, J. Beigel, J. Tierney, H. C. Lane, A. S. Fauci, M. B. F. Massaquoi, F. Sahr, D. A. Mal-vy, Randomized, Controlled trial of ZMapp for Ebola virus infection, N. Engl. J. Med., 375 (2016), 1448–1456.

G. G. J. Olinger, J. Pettitt, D. Kim, C. Working, O. Bohorov, B. Bratcher, E. Hiatt, S. D. Hume, A. K. Johnson, J. Morton, M. Pauly, K. J. Whaley, C. M. Lear, J. E. Biggins, C. Scully, L. Hensley, L. Zeitlin, Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques, PNAS, 109 (2012), pp. 18030–18035.

J. A. Wilson, M. Hevey, R. Bakken, S. Guest, M. Bray, A. L. Schmaljohn, M. K Hart, Epitopes in-volved in antibody-mediated protection from Ebola virus, Science, 287 (2000), pp. 1664–1666.

F. Lasala, E. Arce, J. R. Otero, J. Rojo, R. Delgado, Mannosyl glycodendritic structure inhibits DC-SIGN-Mediated Ebola virus infection in cis and in trans, Antimicrob. Agents Chemother., 47 (2003), pp. 3970–3972.

R. Ribeiro-Viana, M. Sánchez-Navarro, J. Lucz-kowiak, J. R. Koeppe, R. Delgado, J. Rojo, B. G. Davis, Virus-like glycodendrinanoparticles display-ing quasi-equivalent nested polyvalency upon gly-coprotein platforms potently block viral infection. Nat. Commun., 3 (2012), p.1303.

B. M. Illescas, J. Rojo, R. Delgado, N. Martín, Multivalent glycosylated nanostructures to inhibit Ebola virus infection, J. Am. Chem. Soc., 139 (2017), pp. 6018−6025.

Z. Jin, L. K. Smith, V. K. Rajwanshi, B. Kim; J. Deval, The Ambiguous base-pairing and high sub-strate efficiency of T-705 (favipiravir) ribo-furanosyl 5′-triphosphate towards influenza A virus polymerase, PLoS One, 8 (2013), e68347.

L. Oestereich, A. Lüdtke, S. Wurr, T. Rieger, C. Muñoz-Fontela, S. Günthera, Successful treatment of advanced Ebola virus infection with T-705 (fav-ipiravir) in a small animal model, Antiviral Re-search, 105 (2014), pp. 17–21.

D. Sissoko et al., Experimental treatment with favi-piravir for Ebola virus disease (the JIKI trial): A historically controlled, single-arm proof-of-concept trial in Guinea, PLoS Med., 13 (2016), e1001967.

T. K. Warren, J. Wells, R. G. Panchal, K. S. Stuth-man, N. L. Garza, S. A. Van Tongeren, L. Dong, C. J. Retterer, B. E. Eaton, G. Pegoraro, S. Honnold, S. Bantia, P. Kotian, X. Chen, B. R. Taubenheim, L. W. Welch, D. M. Minning, Y. S. Babu, W. P. Sheridan, S. Bavari, Protection against filovirus diseases by a novel broad-spectrum nucleoside ana-logue BCX4430, Nature, 508 (2014), pp. 402−405.

T. K. Warren, R. Jordan, M. K. Lo, A. S. Ray, R. L. Mackman, V. Soloveva, D. Siegel, M. Perron, R. Bannister, H. C. Hui, N. Larson, R. Strickley, J. Wells, K. S. Stuthman, S. A. Van Tongeren, N. L. Garza, G. Donnelly, A. C. Shurtleff, C. J. Retterer, D. Gharaibeh, R. Zamani, T. Kenny, B. P. Eaton, E. Grimes, L. S. Welch, L. Gomba, C. L. Wilhelmsen, D. K. Nichols, J. E. Nuss, E. R. Nagle, J. R. Ku-gelman, G. Palacios, E. Doerffler, S. Neville, E. Carra, M. O. Clarke, L. Zhang, W. Lew, B. Ross, Q. Wang, K. Chun, L. Wolfe, D. Babusis, Y. Park, K. M. Stray, I. Trancheva, J. Y. Feng, O. Barauskas, Y. Xu, P. Wong, M. R. Braun, M. Flint, L. K. McMullan, S.-S. Chen, R. Fearns, S. Swaminathan, D. L. Mayers, C. F. Spiropoulou, W. A. Lee, S. T. Nichol, T. Cihlar, S. Bavari, Thera-peutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys, Nature, 531 (2016), pp. 381–385.

M. K. Lo, R. Jordan, A. Arvey, J. Sudhamsu, P. Shrivastava-Ranjan, A. L. Hotard, M. Flint, L. K. McMullan, D. Siegel, M. O. Clarke, R. L. Mack-man, H. C. Hui, M. Perron, A. S. Ray, T. Cihlar, S. T. Nichol, C. F. Spiropoulou, GS-5734 and its par-ent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses, Sci. Rep., 7 (2017), 43395.

C. J. Shoemaker, K. L. Schornberg, S. E. Delos, C. Scully, H. Pajouhesh, G. G. Olinger, L. M. Johan-sen, J. M. White, Multiple cationic amphiphiles in-duce a Niemann-Pick C phenotype and inhibit Ebo-la virus entry and infection, PloS One, 8, (2013), e56265.

L. M. Johansen, J. M. Brannan, S. E. Delos, C. J. Shoemaker, A. Stossel, C. Lear, B. G. Hoffstrom, L. Evans DeWald, K. L. Schornberg, C. Scully, J. Lehár, L. E. Hensley, J. M. White, G. G. Olinger, FDA-approved selective estrogen receptor modula-tors inhibit Ebola virus infection, Sci. Transl. Med., 5 (2013), 190ra79.

H. Fan, X. Du, J. Zhang, H. Zheng, X. Lu, Q. Wu, H. Li, H. Wang, Y. Shi, G. Gao, Z. Zhou, D.-X. Tan, X. Li, Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupt-ing the endolysosomal calcium, Sci. Rep., 7 (2017), 41226.

Y. Zhao, J. Ren, K. Harlos, D. M. Jones, A. Zeltina, T. A. Bowden, S. Padilla-Parra, E. E. Fry, D. I. Stuart, Toremifene interacts with and destabilizes the Ebola virus glycoprotein, Nature, 535 (2016), pp. 169–172.

Ž. Selaković, D. Opsenica, B. Eaton, C. Retterer, S. Bavari, J. C. Burnett, B. A. Šolaja, R. G. Panchal, A limited structural modification results in a signif-icantly more efficacious diazachrysene-based filo-virus inhibitor, Viruses, 4 (2012), pp. 1279–1288.

Ž. Selaković, V. Soloveva, D. Gharaibeh, J. Wells, S. Šegan, R. G. Panchal, B. A. Šolaja, Anti-Ebola activity of diazachrysene small molecules, ACS Inf. Dis., 1 (2015), pp. 264–271.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.