Gordana Bogoeva-Gaceva


Polypropylene is an extremely versatile thermoplastic polymer known for its good performance/price ratio, ex-cellent heat, moisture and chemical resistance, favorable processing characteristics and recyclability. Due to its uni-versal properties, polypropylene is applied in numerous industrial fields such as electronic and electrical, automobile, textile, pipeline, etc. Furthermore, the progress in its synthesis and property modification in the last decade has con-tributed to the development of new polypropylene based materials with advanced performance. This review aims at reporting on some recent developments in polypropylene based materials, such as nanofibers, natural fiber reinforced composites, self-reinforced polypropylene and polypropylene/clay hybrids, that have replaced many types of engi-neering thermoplastics in high-performance applications.


polypropylene; synthesis; crystal structure; nanofibers; natural fiber reinforced polypropylene; polypropylene/clay nanocomposites

Full Text:



X.-Yu Ye, Z.-Kang Xu, Polypropylene fabrics, in: Polypropylene Synthesis, Application and Envi-ronmental Concerns, L. P. Silva, E. F. Barbosa (Eds.), Nova Science Publishers, New York, 2013, pp.11–37.

D. B. Malpass, E. I. Band, Introduction to Indus-trial Polypropylene, Scrivener Publ. LLC, Bever-ly, MA, 2012.

J. Boor, Ziegler-Natta Catalysts and Polymeriza-tion, Academic Press, Inc., 34, 1979.

G. Mei, E. Beccarini, T. Caputo, C. Fritze, P. Mas-sari, D. Agnoletto, S. Pitteri, Recent Technical Advances in Polypropylene, J. Plastic Films and Sheeting, 25 (2) (2009), pp. 95–113.

Y. V. Kissin, Alkene Polymerizations with Transi-tion Metal Catalysts, Elsevier, The Netherlands, 2008.

C. J. Price, L. J. Irwin, D. A. Aubry, S. A. Miller, Fluorenyl Containing Catalysts for Stereoselective Polymerization, in: Stereoselective Polymerization with Single Site Catalysts, L. S. Baugh and J. A. M. Canich (Eds), CRC Press, Boca Raton, FL, 2008 pp. 37–82.

T. Simonazzi, J. C. Haylock, Recent Advances in Polypropylene-Based Materials, Properties and Applications, in: Polymers and Other Advanced Materials: Emerging Technologies and Business Opportunities, P. N. Prasad et al. (Ed.), Plenum Press, New York, 1995.

J. Karger-Kocsis: Structure and morphology, in: Polypropylene: Structure, Blends and Composites, Vol. 1, Chapman & Hall, London, Weiheim, New York, 1995, p. 57.

G. Natta, P. Corradini, Structure and properties of isotactic polypropylene, Nuovo Cimento Suppl., 15 (1960), pp. 40–51; F. J. Padden, H. D. Keith, N. M. Walter, H. W. Wyckoff, Evidence for a second crystal form of polypropylene, J. Appl. Phys., 30 (1959), pp. 1485–1488; F. J. Padden, H. D. Keith. Mechanism of lamellar branching in isotactic pol-ypropylene, J. Appl. Phys., 44 (1973), pp. 1217–1223; D. R. Norton, A. Keller, The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene, Polymer, 26 (1985), pp. 704–716; F. L. Binsbergen, B. G. M. De Lange, Morphology of polypropylene crystallized from the melt, Poly-mer, 9 (1968), pp. 23–40.

N. Pasquini (Ed.), Polypropylene Handbook, Hanser, Munich, 2005; R. Phillips, G. Herbert, J. News, M. Wolkowicz, High modulus polypropyl-ene: Effect of polymer and processing variables on morphology and properties, Polym. Eng. Sci., 34 (1994), pp. 1731–1743; J. Varga, Supermolecular structure of isotactic polypropylene – Review, J. Mater. Sci., 27 (1992), pp. 2557–2579.

Polypropylene. An A-Z reference, in: Polymer Sci-ence and Technology Series, Vol. 2, J. Karger-Kocsis (Ed.), Kluwer Publishers, Dordrecht, 1999.

B. Fillon, A. Thierry, J. C. Wittmann, B. Lotz, Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions, J. Polym. Sci., Part B: Polym. Phys., 31 (1993), pp. 1407–1424.

F. L. Binsbergen, B. G. M. de Lange, Morphology of polypropylene crystallized from the melt, Poly-mer, 9 (1968), pp. 23–40.

J. Varga, F. Schulek, Method for the preparation of β-modification of isotactic polypropylene in pure form, Hungarian Patent Application, P92.01422, 1992.

J. Varga, Modification change during spherulitic growth of polypropylene, Angew. Makromol. Chem., 104 (1982), pp. 79–87.

G. Bogoeva-Gaceva, B. Mangovska, E. Mäder, Crystallization kinetics of maleic anhydride-modified iPP studied by POM, J Appl. Polym. Sci., 77 (2000), pp. 3107–3118.

A. Grozdanov, G. Bogoeva-Gaceva, Optical mi-croscopy of the morphology of isotactic polypro-pylene, J. Serb. Chem. Soc., 63 (6) (1998), pp. 455–466.

J. J. Zhou, J. G. Liu JG, S. K. Yan et al., Atomic force microscopy study of the lamellar growth of isotactic polypropylene, Polymer, 46 (2005), pp. 4077–4087.

L. Raka, G. Bogoeva-Gaceva, Characterization of iPPs from COST P12 action: Application of DSC and X-Ray methods, Proceedings of European Polymer Congress (EPF 2007), Portorož, Slove-nia, 2007.

S. C. Tjong, J. S. Shen, R. K. Y. Li, Morphological behaviour and instrumented dart impact properties of β-crystalline-phase polypropylene, Polymer, 37 (1996), pp. 2309–2316.

A. Romankiewicz, T. Sterzynski, W. Brostow, Structural characterization of α- and β-nucleated isotactic polypropylene, Polym. Int., 53 (2004), pp. 2086–2091.

T. Sterzynski, H. Oysaed, Structure modification of isotactic polypropylene by Bi-component nu-cleating systems, Polym. Eng. Sci., 44 (2004), pp. 352–361.

J. Garbarczyk, D. Paukszta, Influence of additives on the structure and properties of polymers. II. Polymorphic transitions of isotactic polypropylene caused by aminosulphur compounds, Polymer, 22 (1981), pp. 562–564.

G. Zhou, Z. He, J. Yu, J. Z. Han, G. Shi, Studies on the β-from of isotactic polypropylene. I: Characteri-zation of the β-form and study of the β-α transition during heating by wide angle X-ray diffraction, Makromol. Chem., 187 (1986), pp. 633–642.

D. S. Filho, C. F. M. Oliviera, Crystallization ki-netics of the β-modification of isotactic polypro-pylene containing different crystalline phases of linear trans quinacridone pigments, Makromol. Chem., 194 (1993), pp. 285–293.

T. Sterzynski, P. Calo, I. Lambla, M. Thomas, Trans and dimethyl quinacridone nucleation of iso-tactic polypropylene, Polym. Eng. Sci., 37 (1997), pp. 1917–1927.

X. Zhang, G. Shi, Effect of converting the crystal-line form from alpha to beta on the mechanical-properties of ethylene/propylene random-copol-ymers and block-copolymers, Polymer, 35 (1994), pp. 5067–5072.

G. Shi, X. Zhang, Effect of β-nucleator content on the crystallization and melting behaviour of β-crystalline phase polypropylene, Thermochim. Ac-ta, 205 (1992), pp. 235–243.

G. Shi, X. Zhang, Z. Qiu, Crystallization kinetics of β-phase poly(propylene), Macromol. Chem., 193 (1992), pp. 583–591.

J. Garbarczyk, T. Sterzynski, D. Paukszta, Influ-ence of additives on the structure and properties of polymers. IV: Study of phase transition in isotactic polypropylene by synchrotron radiation, Polym. Commun., 30 (1989), pp. 153–157.

J. Varga, I. Mudra, G. W. Ehrenstein, Highly ac-tive thermally stable β-nucleating agent for isotac-tic polypropylene, J. Appl. Polym. Sci., 74 (1999), pp. 2357–2368.

P. Jacoby, B. H. Bersted, W. J. Kissel, C. E. Smith, Studies on the β-crystalline form of isotac-tic polypropylene, J. Polym. Sci. Part B: Polym. Phys., 24 (1986), pp. 461–491.

J. Varga, β-modification of isotactic polypropyl-ene: preparation, structure, processing, properties, application, J. Macromol. Sci., Phys., B41 (2002), pp. 1121–1171.

A. Romankiewicz, PhD Thesis, Poznan University of Technology, Poland (2002).

A. Janevski, G. Bogoeva-Gaceva, E. Mäder, DSC analysis of crystallization and melting behavior of polypropylene in model composites with glass and poly(ethylene terephthalate) fibers, J. Appl. Polym. Sci., 74 (1999), pp. 239–246.

A. Janevski, G. Bogoeva-Gaceva, Isothermal crys-tallization of iPP in model glass-fiber composites, J Appl. Polym. Sci., 69 (1998), pp. 381–389.

M. Avella, S. Cosco, G. D. Volpe, M. E. Errico, Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocompo-sites, Adv. Polym. Tech., 24 (2005), pp. 132–144.

B. Fillon, B. Lotz, A. Thierry, J. C. Wittmann, Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric efficiency scale and evaluation of nucleating additives in iso-tactic polypropylene (α phase), J Polym Sci. Part B: Polym. Phys., 31 (1993), pp. 1395–1405.

C. Silvestre, S. Cimmino, E. Di Pace, Handbook of Polyolefins, 2nd ed, Revised and Expanded, C. Va-sile, Ed; Marcel Dekker, New York , 2000.

A. Janevski, Crystallization, transcrystallization and morphology of modified PP crystallized in the Presence of Solid Phase, PhD thesis, UKIM, Skopje, Macedonia, (2001).

Q. Dou, Effect of Beta Nucleating Agents on the Crystallization, Morphology, Mechanical Proper-ties and Heat Resistence of Injection Molded Iso-tactic Polypropylene, in: Polypropylene Synthesis, Applications and Environmental Concerns, L. P. Silva, E. F. Barbosa (Eds.), Nova Science Publish-ers, New York, 2013, pp.71–95.

B. Pukanszky, Particulate Filled Polypropylene Composites, in: Polypropylene: An A-Z Reference, J. Karger-Kocsis (Ed), Kluwer Publisher, Dor-drecht, 1999, pp. 554–580.

G. Bogoeva-Gaceva, A. Janevski, A. Grozdanov, Crystallization and melting behavior of iPP studied by DSC, J. Appl. Polym. Sci., 67 (1998), pp. 395–404.

G. Bogoeva-Gaceva, A. Janevski, E. Mäder, Char-acterization of a maleic anhydride-modified poly-propylene as an adhesion promoter for glass fiber composites, J. Adhesion Sci. Technol., 14 (2000), pp. 363–380.

G. Bogoeva-Gaceva, H. Queck, E. Mäder, Proper-ties of glass fiber polypropylene composites pro-duced from split-warpknit textile performs, Jour-nal of Thermoplastic Composite Materials 13 (2000), pp. 363–377.

W. Leelapornpisit, M. N. Ton-That, F. Perrin-Sarazin, K. C. Cole, J. Denault, B. Simard, Effect of carbon nanotubes on the crystallization and properties of polypropylene, J. Polym. Sci. Part B: Polym. Phys., 43 (2005), pp. 2445–2453.

G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, G. P. Karayannidis, Crystallization kinetics and nucleation activity of filler in polypropyl-ene/surface-treated SiO2 nanocomposites, Thermo-chim. Acta, 427 (2005), pp. 117–128.

J. T. Xu, Q. Wang, Z. Q. Fan, Non-isothermal crystallization kinetics of exfoliated and intercalat-ed polyethylene/montmorillonite nanocomposites prepared by in situ polymerization, Eur. Polym .J., 41 (2005), pp. 3011–3017.

C. A. Mitchell, R. Krishnamoorti, Non-isothermal crystallization of in situ polymerized poly(ε-caprolactone) functionalized-SWNT nanocompo-sites, Polymer, 46 (2005), pp. 8796–8804.

K. Wang, Y. Xiao, B. Na, H. Tan, Q. Zhang, Q. Fu, Shear amplification and re-crystallization of isotactic polypropylene from an oriented melt inpresence of oriented clay platelets, Polymer, 46 (2005), pp. 9022–9032.

Q. Yuan, S. Awate, R. D. K. Misra, Nonisothermal crystallization behavior of polypropylene-clay nanocomposites, Eur. Polym J., 42 (2006), pp. 1994–2003.

W. Xu, M. Ge, P. He, Nonisothermal crystalliza-tion kinetics of polypropylene/montmorillonite nanocomposites, J. Polym Sci. B: Polym. Phys., 40 (2002), pp. 408–414.

A. R. Bhattachryya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, R. E. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube com-posite, Polymer, 44 (2003), pp. 2373–2377.

R. Nowacki, B. Monasse, E. Piorkowska, A. Galeski, J. M. Haudin, Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear, Polymer, 45 (2004), pp. 4877–4892.

W. Xu, G. Liang, H. Zhai, Sh. Tang, G. Hang, W. P. Pan, Effect of different modified clays on the thermal and physical properties of polypropylene-montmorillonite nanocomposites, Eur. Polym J., 39 (2003), pp. 1467–1474.

J. Y. Wu, T. M. Wu, W. Y. Chen, Sh. J. Tsai. W. F. Kuo, G. Y. Chang, Preparation and characteri-zation of PP/clay nanocomposites based on modi-fied polypropylene and clay, J. Polym. Sci. B: Polym. Phys., 43 (2005), pp. 3242–3254.

B. P. Grady, F. Pompeo, R. L. Shambaugh, D. E. Resasco, Nucleation of polypropylene crystalliza-tion by single-walled carbon nanotubes, J. Phys. Chem. B, 106 (2002), pp. 5852–5858.

M. Avella, S. Cosco, M. L. Di Lorenzo, E. Di Pace, M. E. Errico, G. Gentile, Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modifica-tion, particle shape, and coating, Eur. Polym. J., 42 (2006), pp. 1548–1557.

G. Bogoeva-Gaceva, A. Janevski, E. Mader, Nu-cleation activity of glass fibers towards iPP evalu-ated by DSC and polarizing light microscopy, Pol-ymer, 42 (2001), pp. 4409–4416.

A. Grozdanov, G. Bogoeva-Gaceva, Quantitative evaluation of iPP nucleation in the presence of carbon fibers: induction time approach, J. Serb. Chem. Soc., 67 (2002), pp. 843–859.

E. S. Stevens, Green Plastics. An Introduction to the New Science of Biodegradable Plastics, Prince-ton University Press, Princeton, New Jersey, 2002.

J. E. Guillet, Polymers and Ecological Problems, in: Polymer Science and Technology, Vol. 3, J. E. Guillet (Ed.), Plenum, New York, 1975, pp. 1–25.

G. Scott, D. Gilead (Eds.), Degradable Polymers: Principles and Application, Chapman and Hall, London, 1995.

A. H. Tullo, Chemical and Engineering News, November 15, 2010, p. 26. 11/braskem-to-build-bio-pp-plant.html 2/lang,en/

3D-textile reinforcement in composite materials, A. Miravete (Ed.), Woodhead Publ. Ltd., 1999.

S. Ramkumar, V. Singh, Nanofiber – New Devel-opments, Nonwovens Industry, 42 (4) (2011), pp. 52–58.

X. Yi, L. Xu, Y. L. Wang, G.J. Zhong, X. Ji, Z. M. Li, Morphology and properties of isotactic polypro-pylene/poly(ethylene terephthalate) in situ microfi-brillar reinforced blends: Influence of viscosity ra-tio, Europ. Polym. J., 46 (2010), pp. 719–730.

D. Wang, G. Sun, B. S. Chiou, A High-Throughput, Controllable, and Environmentally Benign Fabrica-tion Process of Thermoplastic Nanofibers, Macro-mol. Mater. Eng., 292 (4) (2007), pp. 407–414.

W. S. Lyoo, Y. G. Choi, J. H. Choi, W. S. Ha, B. C. Kim, Rheological and Morphological Properties of Immiscible Blends and Microfiber Preparation from the Blends, Int. Polym. Process., 15 (2000), pp. 369–379.

E. Fallahi, M. Barmar, M. H. Kish, Micro and nanofibrils from polypropylene/nylon 6 blends, J. Appl. Polym. Sci., 108 (2008), pp. 1473–1481.

P. Liu, Y. Ouyang, R. Xiao, Fabrication and mor-phology development of isotactic polypropylene nanofibers from isotactic polypropylene/poly-lactide blends, J. Appl. Polym. Sci., 123 (2012), pp. 2859–2866.

H. Y. Li, Y. C. Ke, Y. L. Hu, Polymer nanofibres prepared by template melt extrusion, J. Appl. Polym. Sci., 99 (2006), pp. 1018-1023.

R. Rangkupan, D. H. Reneker, Electrospinning process of molten polypropylene in vacuum, J. Met. Mat. Miner., 12 (2003), pp.81–87.

C. S. Kong, K. J. Jo, H. S. Kim, Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning, Polym. Eng. Sci., 49 (2009), pp. 391–396.

P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, M. Moller, Electrospinning of polymer melts: phenomenological observations, Polymer, 48 (2007), pp. 6823–6833.

C. S. Jao, Y. Wang, C. Wang, Novel elastic nano-fibers of syndiotactic polypropylene obtained from electrospinning, European Polymer Journal, 54 (2014), pp. 181–189.

Xiangwu Zhang, Yao Lu, Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibersat High Speed and Low Cost, Polymer Reviews, 54 (4) (2014), pp. 677–701.

S. Padron, A. Fuentes, D. Caruntu, K. Lozanoa, Experimental study of nanofiber production through forcespinning, J. Appl. Phys., 24 (2013), pp. 113–121.

L. S. Chang, M. Gander, B Jefferson, S. J. Judd, Low-cost membranes for use in a submerged MBR, Process, Saf. Environ. Protect. Trans. IChemE Part B, 79 (2001), pp.183–188.

L. Liu, Z. H. Xu, C.Y. Song, Q. B. Gu, Y. M. Sang, G. L. Lu, H. L. Hu, F. S. Li, Adsorption-filtration characteristics of melt-blown polypropyl-ene fiber in purification of reclaimed water, Desal-ination, 201 (2006), pp. 198–206.

C. H. Tseng, C. C. Wang, C. Y. Chen, Polypropyl-ene Fibers Modified by Plasma Treatment for Preparation of Ag Nanoparticles, J. Phys. Chem. B, 110 (2006), pp. 4020–4029.

C. H. Zhang, F. L. Yang, W. J. Wang, B. Chen, Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol), Sep. Pu-rif. Technol., 61 (2008), pp. 276–286.

S. Mosleh, S. M. Gawish, F. H. Khalil, R. F. Bie-niek, Properties and application of novel ampho-teric polypropylene fabrics, J. Appl. Polym. Sci., 98 (2005), pp. 2373–2379.

Y. S. Shin, D. I. Yoo, K. Min, Antimicrobial fin-ishing of polypropylene nonwoven fabric by treatment with chitosan oligomer, J. Appl. Polym. Sci., 74 (1999), pp. 2911–2916.

G. Buschle-Diller, A. Hawkins, J. Cooper, Electro-spun Nanofibers from Biopolymers and Their Bio-medical Applications, in: Modified Fibers with Medical and Specialty Applications, J. V. Edwards, G. Buschle-Diller, S.C. Goheen (Eds.), Springer, Dordrecht, The Netherlands, 2006, pp. 67–80.

Davis, B., Medical Applications and Barrier Prop-erties Using Nanofibers. Techtextil North America Symposium, April 24 – 26, 2012, Georgia World Congress Center, Atlanta, Georgia, 2012 (TT11.2), pp.1–12.

Zini, E. and M. Scandola, Green composites: An overview, Polymer Composites, 32 (12) (2011) pp. 1905–1915.

G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Grozdanov, G. Gentile, M. E. Errico, Natural Fiber Eco-Comopsites, Polymer Composites, 28 (2007), pp. 98–107.

B. Svennerstedt, Durability and life cycle aspects on bio-fibre composite materials, 9th International Conference on Durability of Materials and Com-ponents, Rotterdam, 2002.

S. V. Joshi, L. T. Drzal, A. K. Mohanty, S. Arora, Are natural fiber composites environmentally su-perior to glass fiber reinforced composites? Com-posites Part A: Applied science and manufactur-ing, 35 (2004), pp. 371–376.

N. M. Barkoula, S. K. Garkhail, T. Peijs, Effect of compounding and injection molding on the me-chanical properties of flax fiber polypropylene composites. J. Reinforced Plastics and Compo-sites, 29 (9) (2010), pp. 1366–1385.

V. Srebrenkoska, G. B. Gaceva, M. Avella, M. E. Errico and G. Gentile, Recycling of polypropyl-ene-based eco-composites. Polymer Int., 57 (11) (2008), pp. 1252–1257.

S. M. Luz, A. Caldeira-Pires, P. M. C. Ferrão, Envi-ronmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for au-tomotive components. Resources, Conservation and Recycling, 54 (2010), pp. 1135–1144.

Q. T. H. Shubhra, A. K. M. M. Alam, M. A. Quaiyyum, Mechanical properties of polypropyl-ene composites: A review. J. Thermopl. Compos. Mat., 26 (2013), pp. 362–391.

P. Wambua, J. Ivens, I. Verpoest, Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol., 63 (9) (2003), pp. 1259–1264.

D. Shah, Developing plant fibre composites for structural applications by optimizing composite parameters: a critical review. J. Mater. Sci., 48 (18) (2013), pp. 6083–6107.

L. Yan, N. Chouw, and K. Jayaraman, Flax fibre and its composites-A review. Composites Part B: Engineering, 56 (2014), pp. 296–317.

G. A. Koronis, A. Silva., M. Fontul, Green compo-sites: A review of adequate materials for automo-tive applications. Composites Part B: Engineering, 44 (1) (2013), pp. 120–127.

Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain, Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37 (11) (2012), pp. 1552–1596.

A. K. Mohanty, M. Misra, G. Hinrichsen, Biofi-bres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng., 276–277 (1) (2000), pp. 1–24.

D. B. Dittenber, H. V. S. Gangarao, Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Appl. Sci. Manufac., 43 (8) (2012), pp. 1419–1429.

H. Karian, Handbook of polypropylene and poly-propylene composites, revised and expanded. 2 edition, CRC press, New York, 2003.

V. Srebrenkoska, G. Bogoeva-Gaceva, D. Dimeski, Preparation and recycling of polymer eco-composites. I. Comparison of the conventional molding techniques for preparation of polymer eco-composites, Macedonian J. Chem. Chem. Eng., 28 (1) (2009), pp. 99–109.

V. Srebrenkoska, G. Bogoeva-Gaceva, M. Avella, M. E. Errico, G. Gentile, Utilization of Recycled Polypropylene for Production of Eco-Composites, Polymer-Plastics Technol. Eng., 48 (2009), pp. 1113–1120.

B. Dimzoski, G. Bogoeva-Gaceva, G. Gentile, M. Avella, A. Grozdanov, Polypropylene-based Eco-Composites filled with Agricultural Rice Hulls Waste, Chem. Biochem. Eng. Q., 23 (1) (2009), pp. 61–66.

F. Henning, H. Ernst, R. Brussel, Innovative Pro-cess Technology LFT-D-NF Offers New Possibili-ties for Emission Reduced Long-Natural Fiber Re-inforced Thermoplastic Components, in: 3rd Annu-al SPE Automotive Composite Conference, Troy, MI, USA, September 9–10, 2003.

A. N. Netravali, S. Chabba, Mater. Today, 6 (4), 2003.

A. Kolkmann, TRIP Report, in: 4th International Wood and Natural Fiber Composite Symposium, Kassel, Germany, April 10–11, 2002.

F. Mundera, Advanced Technology for Processing of NFP for Industrial Application, in: 7th Interna-tional Conference on Wood Plastic Composites, Madison, WI, May 19–20, 2003.

S. Kalia, B. S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polym. Eng. Sci., 49 (2009), pp. 1253–1272.

J. Summerscales, A. Virk, W. Hall, A review of bast fibres and their composites: Part 3 –Modelling. Composites Part A: Applied Science and Manufacturing, 44 (2013), pp. 132–139.

H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B-Engineering, 42 (4) (2011), pp.856-873.

A. Shahzad, Hemp fiber and its composites – A review. J. Compos. Mater., 46 (8) (2012), pp. 973–986.

A. Sanz Mirabal, L. Scholz, M. Carus, Market study on bio-based polymers in the word-capacities, pro-duction and applications: status quo and trends to-wards 2020. Nova-Institute, GmbH., 2013. -2010-09-28.

T. N. Abraham, S. Siengchin, J. Karger-Kocsis, Dynamic mechanical thermal analysis of all-PP composites based on β- and α-polymorphic forms, J. Mater. Sc., 43 (2008), pp. 3697–3703.

T. N. Abraham, S. D. Wanjale, T. Bárány, J. Karger-Kocsis, Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: effect of β nuclea-tion of the matrix, Compos. A: Appl. Sci. Manuf., 40 (2009), pp. 662–668.

T. Bárány, A. Izer, J. Karger-Kocsis, Impact re-sistance of all-polypropylene composites com-posed of α and β modifications, Polym. Test. 28 (2009), pp. 176–182.

T. Bárány, J. Karger-Kocsis, T. Czigány, Devel-opment and characterization of self-reinforced poly(propylene) composites: carded mat rein-forcement, Polym. Adv. Technol. 17 (2006), pp. 818–824.

A. Izer, T. Bárány, J. Varga, Development of wo-ven fabric reinforced all-polypropylene composites with β nucleated homo- and copolymer matrices, Compos. Sci. Technol. 69 (2009), pp. 2185–2192.

N. M. Barkoula, B. Alcock, N. O. Cabrera, T. Peijs, Fatigue properties of highly oriented poly-propylene tapes and all-polypropylene composites, Polym. Compos. 16 (2008), pp. 101–113. sheets/Self%20Reinforced%20PP%20Armordon%20Data%20Sheet.pdf

H. Hayes, Self-Reinforced Polypropylene Compo-sites - A New Class of Material for the Motor-sports Industry, SAE Technical Paper 2008-01-2947, 2008, doi:10.4271/2008-01-2947.

A. Grozdanov, A. Buzarovska, G. Bogoeva-Gaceva, M. Avella, M. E. Errico, G. Gentile, Non-isothermal crystallization kinetics of kenaf fi-ber/polypropylene composites, Polym. Eng. Sci., 47 (2007), pp. 745–749.

A. Grozdanov, A Buzarovska, G. Bogoeva-Gaceva, E. Nedkov, Nonisothermal melting and crystallization of polypropylene in model compo-sites: Kinetic analysis, J. Appl. Polym. Sci., Part B: Polymer Physics, 43 (2005), pp. 66–73.

G. Bogoeva-Gaceva, A. Grozdanov, Crystalliza-tion of isotactic polypropylene: The effect of fiber surface, J. Serb. Chem. Soc., 71 (2006), pp. 483–499.

Y. Swolfs, O. Zhang, J. Baets, I. Verpoest, The influence of process parameters on properties of hot compacted self-reinforced polypropylene com-posites, Composites Part A: Applied Science and Manufacturing, 65 (2014), pp. 38–46.

T. Bárány; A. Izer; T. Czigány, On consolidation of self-reinforced polypropylene composites, Plas-tics, Rubber and Composites, 35 (9) (2014), avail-able online (DOI: 174328906X128234).

A. Grozdanov, G. Bogoeva-Gaceva, Transcrystal-lization of maleated polypropylene in the presence of various carbon fibers, Polym. Bull., 50 (2003), pp. 397–404.

A. Janevski, G. Bogoeva-Gaceva, The influence of glass fibers on morphology of β-nucleated iPP evaluated by DSC, J. Serb. Chem. Soc., 2014 (doi:10.2298/JSC140324055J).

D. R. Paul, L. M. Robeson, Polymer nanotechnol-ogy: Nanocopomposites, Polymer, 49 (2008), pp. 3187–3204.

S. S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci., 28 (2003), pp. 1539–1641.

M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new clas of materials, Mater. Sci. Eng., 28 (2000), pp. 1–63.

R. A. Vaia, E. P. Giannelis, Polymer nanocompo-sites: status and opportunities, MRS Bulletin, 26 (2001), pp. 394–401.

J. Jancar, J. F. Douglas, Francis W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, and M. J. Buehler, Current issue in research on structure-property relationships in polymer nano-composites, Polymer, 51 (2010), pp. 3321—3343.

S. K. Kumar, R. Krishnamoorti, Nanocomposites: structure, phase behaviour and properties, Annu. Rev. Chem. Biomol. Eng., 1 (2010), pp. 37–58.

P. Svoboda, C. Zeng, H. Wang, L. J. Lee, D. L. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites., J. Appl. Polym. Sci., 85 (2002), pp.1562–1570.

M. Kawasumi M, N. Hasegawa, M. Kato, A. Usu-ki, A. Okada, Preparation and mechanical proper-ties of polypropylene−clay hybrids, Macromole-cules, 30 (1997), pp. 6333–6338.

J. A. M. Ferreira, P. N. B. Reis, J. D. M. Costa, B. C. H. Richardson, M. O. W. Richardson, A study on mechanical properties on polypropylene en-hanced by surface treated nanoclays, Compos. Part B: Eng., 42 (2011), pp. 1366–1372.

Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, D. R. Paul, Clay-Based Polymer Nanocomposites: Research and Commercial Development, J. Nanosci. Nano-technol., 5 (2005), pp. 1574–1592.

A. Sorrentino, M. Tortora, V. Vittoria, Diffusion Behavior in Polymer–Clay Nanocomposites, J. Polym. Sci. Part B: Polym Phys., 44 (2006), pp. 265–274.

J. W. Gilman, Flammability and thermal stability studies of polymer layered silicate (clay) nano-composites, Appl. Clay Sci., 15 (1999), pp. 31–49.

M. Zanetti, G. Camino, D. Canavese, A. B. Mor-gan, F. J. Lamelas, C. A. Wilkie, Fire Retardant Halogen-Antimony-Clay Synergism in Polypro-pylene Layered Silicate Nanocomposites, Chem. Mater., 14 (2002), pp. 189–193.

A. Okada, M. Kawasumu, A. Usuki, Y. Kojima, T. Kurauchi, O. Kamigaito, Synthesis and properties of nylon-6/clay hybrids, in: Polymer based molec-ular composites, D. W. Schaefer, J. E. Mark (Eds.), MRS Symposium, Proceedings, 1990, Pittsburgh, vol. 171, pp. 45–50.

A. M. Mazrouaa, Polypropylene Nanocomposites, in: Polypropylene, F. Dogan (Ed.), 2012, ISBN: 978-953-51-0636-4, InTech, pp. 256–286; availa-ble from:

J. Tudor, L. Willington, D. O’Hare, B. Royan, Intercalation of catalytically active metal complex-es in phyllosilicates and their application as pro-pene polymerization catalyst, Chem. Commun., 1996, pp. 2031-2032.

F. Hussain, M. Hojjati, M. Okamoto, R. Gorga, Plymer-matrix nanocomposites, properties, pro-cessing, manufacturing and applications: An Overview, J. Compos. Mater., 40 (2006), pp. 1511–1575.

S. Pavlidou, C. D. Papaspyrides, A review on pol-ymer-layered silicate nanocomposites, Prog. Polym. Sci., 33 (2008), pp. 1119–1198.

M. V. Marques, M. C. de Oliveira, Polypropylene nanocomposites using matellocene catalysts sup-ported on commercial organophilic clays, Polym. Bull., 64 (2010), pp. 221–231.

N. A. D’Souza, L. K. Sahu, A. Ranade, W. Strauss, A. Hernandez-Luna, Polymer Nanocomposites in Processing, in: Handbook of Plastic Processes, C.A. Harper (Ed.), John Wiley & Sons, Inc., Hoboken, New Jersey, 2006, pp. 681–685.

A. Usuki, M. Kato, A. Okada, T. Kurauchi, Syn-thesis of polypropylene-clay hybrid, J. Appl. Polym. Sci., 63 (1997), pp. 137–138.

M. Kato, A. Usuki, A. Okada, Synthesis of poly-propylene oligomer-clay intercalation compounds, J. Appl. Polym. Sci., 66 (1997), pp. 1781-1785.

A. Oya, Polypropylene-clay nanocomposites, in: Polymer-clay nanocomposites, T. J. Pinnavaia, G. W. Beal (Eds.), Wiley, London, 2000, pp. 151–172.

N. Hasegawa, H. Okamoto, M. Kato, A. Useki, Preparation and mechanical properties of polypro-pylene-clay hybrids based on modified polypro-pylene and organophilic clay, J. Appl. Polym. Sci., 78 (2000), pp. 1918–1922.

D. Schmidt, D. Shah, E. P. Giannelis, New ad-vances in polymer/layered silicate nanocompo-sites, Curr. Opin. Solid State Mater., 6 (2002), pp. 205–212.

Manias, A direct blending approach for polypro-pylene/clay nanocomposites enhances properties, Mater. Res. Soc. Bull., 26 (2001), pp. 862–863.

B. Lepoittevin, N. Pantoustier, M. Devalckenaere, M. Alexandre, C. Calberg, R. Jeґroˆme, C. Henrist, A. Rulmont, Ph. Dubois, Polymer, 44 (7) (2003), pp. 2033–2040.

S. Hambir, N. Bulakh, J. P. Jog, Polypropyl-ene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic me-chanical behaviour, Polym. Eng. Sci., 42 (2002), pp. 1800–1807.

N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, A. Okada, Preparation and mechanical properties of polypropylene-clay hybrids using a maleic an-hydride-modified polypropylene oligomer, J. Appl. Polym. Sci., 67 (1998), pp. 87–92.

L. Raka, G. Bogoeva-Gaceva, J. Loos, Characteri-zation of polypropylene/layered silicate nanocom-posites prepared by single-step method, J. Therm. Anal. Calorim., 100 (2010), pp. 629–639.

G. Bogoeva-Gaceva, L. Raka, B. Dimzoski, Ther-mal stability of polypropylene/organo-clay nano-composites produced in a single-step mixing pro-cedure, Adv. Compos. Lett., 17 (2008), pp. 161–164.

Z. M. O. Rzaev, A. Yilmazbayhan, E. Alper, A one-step preparation of compatibilized polypropylene-nanocomposites by reactive extrusion processing, Adv. Polym. Technol., 26 (2007) pp. 41–55.

E. Manias, A. Touny, L. Wu, B. Lu, K. Strawhecker, J.W. Gilman, T.C. Chung, Polypro-pylene/silicate nanocomposites, synthetic routes and materials properties, Polym. Mater. Sci. Engn., 82 (2000), pp. 282–283.

J. Y. Wu, T. M. Wu, W. Y. Chen, S. J. Tsai, W. F. Kuo, G.Y. Chang, Preparation and characterization of PP/clay nanocomposites based on modified pol-ypropylene and clay, J. Polym. Sci. Part B: Polym. Phys., 43 (2005), pp.3242–3254.

M. L. Loґpez-Quintanilla, S. Sanchez-Valdeґ, L. F. R. de Valle, M. R. Guedea, Preparation and mechanical properties of PP/PP-g-MA/Org-MMT nanocomposites with different MA con-tent, Polym. Bull., 57 (2006) pp.385–393.

Y. Q. Zhang, J. H. Lee, H. J. Jang, Ch. W. Nah, Preparing PP/clay nanocomposites using a swell-ing agent, Compos. Part B: Eng., 35 (2004), pp. 133–138.

B. R. Guduri, A. S. Luytm, Structure and mechan-ical properties of polycarbonate – modified clay nanocomposites, J. Nanosci. Nanotechnol., 8 (2008), pp. 1880–1885.

S. J. Nejad, S. J. Ahmadi, H. Abolghasemi A. Mo-haddespour, Thermal Stability, Mechanical Prop-erties and Solvent Resistance of PP/clay Nano-composites Prepared by Melt Blending, J. Appl. Sci., 7 (17) (2007), pp. 2480–2484.

J. Yu, K. Lu, E. D. Sourty, N. Grossiord, C. E. Koning, J. Loos, Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology, Carbon, 45 (15) (2007), pp. 2897–2903.

H. E. Miltner, N. Grossiord, K. Lu, J. Loos, C. E. Koning, B. Van Mele, Isotactic Polypropyl-ene/carbon nanotube composites prepared by latex technology. Thermal analysis of camon nanotube induced nucleation, Macromolecules, 41 (2008), pp. 5753–5762.

K. Lu, N. Grossiord, C. E. Koning, H. E. Miltner, B. Van Mele, J. Loos, Carbon nanotube/isotactic polypropylene composites prepared by latex tech-nology: morphology analysis of CNT-induced nu-cleation, Macromolecules, 41 (2008), pp. 8081–8085.

L. Raka, G. Bogoeva-Gaceva, K. Lu, J. Loos, Characterization of latex-based isotactic polypro-pylene/clay nanocomposites, Polymer, 50 (2009), pp. 3739–3746.

P. Maiti, P. H. Nam, M. Okamoto, T. Kotaka, N. Hasegawa, A. Usuki, Influence of crystallization on intercalation, morphology, and mechanical properties of propylene/clay nanocomposites, Macromolecules, 35 (2002), pp. 2042–2049.

G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, G. P. Karayannidis, Crystallization kinetics and nucleation activity of filler in polypropyl-ene/surface treated SiO2 nanocomposites, J. Polym. Sci. Part B: Polym. Phys., 427 (2005), pp. 117–128.

V. Causin, C. Marega, R. Saini, A. Marigo, G. Ferrara, Crystallization behavior of isotactic poly-propylene based nanocomposites, J. Therm. Anal. Cal., 90 (2007), pp. 849–857.

B. Kim, S. H. Lee, D. Lee, B. Ha, J. Park, K. Char, Crystallization kinetics maleated polypropyl-ene/clay hybrids, Ind. Eng. Chem. Res., 43 (2004), pp. 6082–6089.

J. Ma, S. Zhang, Z. Qi, G. Li, Y. Hu, Crystalliza-tion behaviors of polypropylene/montmorillonite nanocomposites, J. Appl. Polym. Sci., 83 (2002), pp. 1978–1985.

F. Perrin-Sarazin, M. T. Ton-That, M. N. Bureau, J. Denault, Micro- and nano-structure in polypro-pylene/clay nanocomposite, Polymer, 46 (2005), pp.11624–11634.

S. Hambir, N. Bulakh, J. P. Jog, Polypropyl-ene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic me-chanical behaviour, Polym. Eng. Sci., 42 (2002), pp. 1800–1807.

S. P. Lonkar, R. P. Singh, Isothermal crystal-lization and melting behavior of polypropyl-ene/layered double hydroxide nanocomposites, Thermochim. Acta, 491 (2009), pp. 63–70.

A. Somwangthanaroj, E. C. Lee, M. J. Solomon, Early stage quiescent and flow-induced crystalliza-tion of intercalated polypropylene nanocomposites by time-resolved light scattering, Macromolole-cules, 36 (2003), pp. 2333–2342.

M. L. Du, B.C. Guo, J. J. Wan, Q. L. Zou, D. M. Jia, Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene, J. Polym. Res., 17 (2010), pp. 109–118.

C. Harrats, G. Groeninckx, Features, Questions and Future Challenges in Layered Silicates Clay Nanocomposites with Semicrystalline Polymer Matrices, Macromol. Rapid Commun., 29 (2008), pp. 14–26.

B. Wang, H.-Xiong Huang, Effect of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites, Polym. Degrad. Stab., 98 (2013), pp. 1601–1608.

L. Raka, A. Sorrentino, G. Bogoeva-Gaceva, Iso-thermal crystallization kinetics of polypropylene latex-based nanocomposites with organo-modified clay, J. Polym. Sci. Part B: Polymer Physics, 48 (2010), pp. 1927–1938.

B. Wang, H. X. Huang, Tailoring the crystalline structure of polypropylene parts molded via water-assisted injection molding: effects of melt tem-perature and polymeric nucleating agent, Polym. Eng. Sci., 53 (2013), pp. 1927–1936.

P. J. Purohit, D.-Yi Wang, A. Wurm, C. Schick, A. Schönhals, Comparison of thermal and dielectric spectroscopy for nanocomposites based on poly-propylene and layered double hydroxide – proof of interfaces, Europ. Polym. J., 55 (2014), pp. 48–56.

R. Pfaendner, Nanocomposites: Industrial oppor-tunity or challenge?, Polym. Degrad. Stab., 95 (2010), pp. 369–373.

Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, D. R. Paul, Clay-based polymer nanocomposites: research and commercial development, J. Nanosci. Nanotechnol., 5 (2005), pp. 1574–1592.

R. Pfaendner, Stabilization of nanocomposites, in: Industry Guide to Nanocomposites, G. Beyer (Ed.), Applied Market Information Ltd., 2009, pp.117–135.

S. Morlat, B. Mailhot, D. Gonzales, J. L. Gardette, Photo-oxidation of polypropylene/montmorillonite nanocomposites.1. Influence of nanoclay and compatibilizing agent, Chem. Mater., 16 (2004), pp. 377–383.

J. K. Pandey, K. R. Reddy, A. P. Kumar, R. P. Singh, An overview on the degradability of polymer nanocomposites, Polym. Degrad. Stab., 88 (2005), pp. 234–250.

G. Bogoeva-Gaceva, L. Raka, Gj. Petrusevski, Photo-oxidative behavior of iPP/clay nanocom-posites produced via single-step extrusion method at different cooling conditions, in: Polypropylene Synthesis, Applications and Environmental Concerns, L. P. da Silva, E. F. Barbosa (Eds.), Nova Science Publishers, Inc., New York, 2012, pp. 321–343.

M. Morreale, N. T. Dintcheva, F. P. Mantia, The role of filler type in the photo-oxidation behavior of micro- and nano-filled polypropylene, Polym. Int., 60 (2011), pp. 1107–1116.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.