Aleksandra Ivanoska-Dacikj, Gordana Bogoeva-Gaceva, Aleksandra Buzarovska


Hybrid nanofillers composed of different ratios of carbon nanotubes (CNTs) and sodium montmorillonite (MMT) were prepared by physically pulverizing both materials in powder form. Their dispersion behavior was inves-tigated in different solvents (water, toluene and carbon tetrachloride). UV-vis spectroscopy showed that the absorb-ance at 550 nm for the CNTs becomes more intense with the increasing amount of added MMT, when water is used as a solvent, implying their improved dispersion. This is not so evident for toluene and carbon tetrachloride. TGA analyses showed that the thermal stability of the hybrid nanofillers increases with the increase of the MMT content. Raman spectroscopy confirmed the mutual interaction between CNTs and MMT, demonstrated by shift of D and G band with addition of MMT in the nanofiller.


hybrid nanofiller; carbon nanotubes; montmorillonite; dispersion

Full Text:



S. Iijima, Helical micro-tubules of graphitic car-bon, Nature, 345 (1991), pp. 56–58.

H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., 500 (2002), pp. 218–241.

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. To-manek, J. E. Fischer, R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science, 273 (1996), pp. 483–488.

J. Chen, M. A. Hamon, H. Hu, Y. Chen,A. M. Rao, P. C. Eklund, R. C. Haddon, Solution Proper-ties of Single-Walled Carbon Nanotubes, Science, 282 (1998), pp. 95–98.

R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, T. S. A. Hor, Plati-num Deposition on Carbon Nanotubes via Chemi-cal Modification, Chem. Mater., 10 (1998), pp. 718–722.

M. L. Sham, J. K. Kim, Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments, Carbon, 44(4) (2006), pp. 768–777.

S. C. Wang, K.S. Chang, C. J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochim. Acta, 54(21) (2009), pp. 4937–4943.

L. Vaisman, H. D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci., 128 (2006), pp. 37–46.

C. Y. Li, L. Li, W. Cai, S. L. Kodjie, K. K. Ten-neti, Nanohybrid Shish-Kebabs: Periodically Functionalized Carbon Nanotubes, Adv. Mater., 17 (2005), pp. 1198–1202.

V. Nicolosi, H. Cathcart, A. R. Dalton, D. Aherne, G. R. Dieckmann, J. N. Coleman, Spontaneous exfoliation of single-walled carbon nanotubes dispersed using a designed amphiphilic peptide, Biomacromolecules, 9 (2008), pp. 598–602.

Y. F. Lan, J. J. Lin, Clay-assisted dispersion of organic pigments in water, Days Pigm., 90 (2011), pp. 21–27.

Y. H. Pai, Clay as a dispersion agent in anode catalyst layer for PEMFC, J. Power Sources, 163 (2006), pp. 398–402.

Y. F. Lan, J. J. Lin, Observation of Carbon Nano-tube and Clay Micellelike Microstructures with Dual Dispersion Property, J. Phys. Chem. A., 113 (2009), pp. 8654–8659.

L. Liu, J. C. Grunlan, Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocom-posites, Adv. Funct. Mater., 17 (2007), pp. 2343–2348.

Z. Wang, X. Meng, J. Li, X. Du, S. Li, Z. Jiang, T. Tang, A Simple Method for Preparing Carbon Nanotubes/Clay Hybrids in Water, J. Phys. Chem. C., 113 (2009), pp. 8058–8064.

A. Ivanoska-Dacikj, G. Bogoeva-Gaceva, A. Buzarovska, I. Gjorgjiev, Lj. Raka, Preparation and properties of natural rubber/organo-montmorillonite: from lab samples to bulk materi-al, Maced. J. Chem. Chem. Eng., 33 (2) (2014), pp. 249–265.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Poul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes, Science, 297 (2002), pp. 593–596.

H. Kataura, Y. Kumazawa,Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Optical properties of single-wall carbon nanotubes, Synth. Met. 103 (1999), pp. 2555–2558.

N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett., 68 (1992), pp. 1579–1581.

R. Saito, M. Fujita, G. Dresselhaus, M. S. Dressel-haus, Electronic structure of chiral graphene tu-bules, App. Phys. Lett., 60 (1992), pp. 2204–2206.

J. S. Laurent, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, Ultrafast carrier dynamics in Single-Wall Carbon Nanotubes, Phys. Rev. Lett., 90 (2003), pp. 057404.

L. Q. Jiang, L. Gao, J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, J. Col-loid Interface Sci., 260 (2003), pp. 89–94.

Y. Qin, L. Liu, J. Shi, W. Wu, J. Zhang, Z. Guo, Y. Li, D. Zhu, Large-Scale Preparation of Solubil-ized Carbon Nanotubes, Chem. Mater., 15 (2003), pp. 3256–3260.

D. Baskaran, J. W. Mays , M. S. Bratcher, Non-covalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes, Chem. Mater., 17 (2005), pp. 3389–3397.

M. S. Dresselhaus, G. Dresselhaus, Light scatter-ing in graphite intercalation compounds, App. Phys., 51 (1982), pp. 3–57.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.