PROGRESS IN MATERIALS FOR MICROELECTRONICS AND FURTHER CHALLENGES

Nenad Novkovski, Aleksandar Skeparovski, Albena Paskaleva, Decho Spassov

Abstract


Development of materials and technologies for microelectronics is required by the needs of the constantly in-creasing level of integration of microelectronics circuits. Increase of the integration level compels downscaling of all the dimensions of devices, which in its turn requires very thin layers with exceptional quality due to rather high elec-tric fields at working conditions. First, technological improvements are adopted aimed at fabrication of materials with uniform quality, geometrical flatness and extremely low density of intentionally introduced defects. Second, new fab-rication methods are developed providing materials with much better quality. Third, new materials showing better properties than the standard (conventional) ones are obtained and developed further.
Decreasing the dimensions of the layers changes the nature of the physical phenomena involved in the func-tioning of devices. Quantum mechanical mechanisms are more and more important in the description of the properties of the materials and devices on the nanoscale. The question arises where is the limit of the possibilities of the materi-als and technologies for nanoscale electronics.


Keywords


microelectronics; ultrathin layers; limits of the scaling

Full Text:

PDF

References


P. S. Goley, M. K. Hudait, Germanium Based Field-Effect Transistors: Challenges and Opportu-nities, Materials, 7 (2014), pp. 2301–2339.

N. M. Bom, G. V. Soares, S. Hartmann, A. Bordin, C. Radtke, GeO2/Ge structure submitted to anneal-ing in deuterium: Incorporation pathways and as-sociated oxide modifications, Appl. Phys. Lett., 105 (2014), 141605-1−141605-4.

F. La Via, M. Camarda, A. La Magna, Mechanisms of growth and defect properties of epitaxial SiC, Appl. Phys. Rev., 1 (2014), pp. 031301-1–031301-36.

L. Hu, J. Su, Z. Ding, Q. Hao, X, Yuan, Investiga-tion on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch, J. Appl. Phys., 115 (2014), 094503-1–094503-10.

L. Liu, J. H. Edgar, Substrates for gallium nitride epitaxy, Mater. Sci. Eng. R., 37 (2002), pp. 61−127.

A.Denis, G. Goglio, G. Demazeau, Gallium nitride bulk crystal growth processes: A review, Mater. Sci. Eng. R, 50 (2006), pp. 167–194.

J. Wu, S. Chen, Al. Seeds, H. Liu, Quantum dot optoelectronic devices: lasers, photodetectors and solar cells, J. Phys. D: Appl. Phys., 48(2015), pp. 363001-1–363001-28.

K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007), pp.183–191.

D. Chen, G. Wang, J. Li, Q. Guo, LinYe, H. Zhou, L. Zheng, M. Zhang, S. Liu,Graphene film synthe-sis on SiGe semiconductor substrate for field-effect transistor, Materials Letters, 135 (2014), pp. 222–225.

G. Lippert, J. Dąbrowski, T. Schroeder, M. A. Schubert,Y. Yamamoto, F. Herzige, J. Maultzsch, J. Baringhaus, C. Tegenkamp, M. C. Asensio, J. Avi-la, G. Lupina, Graphene grown on Ge(001) from atomic source, Carbon, 75 (2014), pp. 104–112.

S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile Memory Cells Based on MoS2/Graphene Hetero-structures, ACS Nano, 7 (2013), pp. 3246–3252.

W. M. Weber, A. Heinzig, J. Trommer, D. Martin, M. Grube, T. Mikolajick, Reconfigurable nan-owire electronics – A review, Solid-St. Electron., 102 (2014), pp. 12–24.

M. Fu, D. Pan, Y. Yang, T. Shi, Z. Zhang, J. Zhao, H. Q. Xu, Q. Chen, Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm, Appl. Phys. Lett., 105 (2014), pp. 143101-1–143101-3.

С. С. Некрашевич, В. А. Гриценко, Электронная структура оксида кремния (Обзор), Физика твердого тела, 56 (2014), pp. 209–223; S. S. Nekrashevich, V. A. Gritsenko, Electronic struc-ture of silicon dioxide (a review), Physics of the Solid State, 56 (2014), pp. 207–222.

T. Yamasaki, C. Kaneta, T. Uchiyama, T. Uda, K. Terakura, Phys. Rev. B, 63 (2001), pp. 115314-1–115314-5.

K. Xue, H. P. Ho, J. B. Xu, Local study of thick-ness-dependent electronic properties of ultrathin silicon oxide near SiO2/Si interface, J. Phys. D: Appl. Phys.,40 (2007), pp. 2886–2893.

N. Novkovski, M. Dutoit, J. Solo de Zaldivar, Die-lectric breakdown in thin Si oxynitride films pro-duced by rapid thermal processing, Appl. Phys. Lett.,56(1990), pp.2120–2122.

M. Dutoit, P. Letourneau, J. Mi, N. Novkovski, J. Manthey, J. Solo de Zaldivar, Optimization of thin Si oxynitride films produced by rapid thermal pro-cessing for applications in EEPROMs, J. Electro-chem. Soc., 140 (1993), pp. 549−555.

N. Novkovski, On the impeded growth of oxide films on Si in N2O ambient, Appl. Phys. A, 68 (1999), pp. 573-575.

M. L. Green, E. P. Gusev, R. Degraeve, E. L. Gar-funkel, Ultrathin (< 4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Un-derstanding the processing, structure, and physical and electrical limits,J. Appl. Phys., 90 (2001), pp. 2057−2121.

N. Novkovski, E. Atanassova, Approaching the limit of the SiO2 possibilities for application in na-noscale microelectronics, J. Optoelectron.Adv. Mat., 8 (2006), pp. 1238−1242.

J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., 69 (2006), pp. 327–396.

J. H. Choi, Y. Mao, J. P. Chang, Development of hafnium based high-k materials–A review, Mater. Sci. Eng. R, 72 (2011), pp. 97–136.

S. K. Ray, R. Mahapatra, S. Maikap, High-k gate oxide for silicon heterostructure MOSFET devices, J. Mater. Sci.: Mater. Electron.,17 (2006), pp. 689–710.

X. Qin, H. D., J. Kim, R. M. Wallace, A crystalline oxide passivation for Al2O3/AlGaN/GaN, Appl. Phys. Lett.,105 (2014), pp. 141604-1−141604-5.

D. Panda, T.-Y. Tseng, Growth, dielectric proper-ties, and memory device applications of ZrO2 thin films, Thin Solid Films, 531 (2013), pp. 1–20.

M. Barth, G. B. Rayner Jr., S. McDonnell, R. M. Wallace, B. R. Bennett, R. Engel-Herbert, and S. Datta, High quality HfO2/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness, Appl. Phys. Lett., 105 (2014), pp. 222103-1−222103-5.

N. Novkovski, Peculiarities of the interface between high-permittivity dielectrics and semi–conductors, Front. Mater., 1 (2014), pp. 30-1–30-3.

J.-P. Locquet, C. Marchiori, M. Sousa, J. Fom-peyrine, J. W. Seo, J. Appl. Phys., 100 (2006), pp. 051610-1–051610-14.

H. Wong, J. Zhang, S. Dong, K. Kakushima, H. Iwai, Thermal annealing, interface reaction, and lanthanum-based sub-nanometer EOT gate dielec-trics, Vacuum, 118 (2015), pp. 2–7.

E. Atanassova, M. Kalitzova, G. Zollo, A. Paskaleva, A. Peeva, M. Georgieva, G. Vitali, High temperature-induced crystallization in tantalum pentoxide layers and its influence on the electrical properties, Thin Solid Films, 426 (2003), pp. 191–199.

N. Novkovski, E. Atanassova, A comprehensive model for the I-V characteristics of metal Ta2O5/SiO2-Si structures, Appl. Phys. A, 83 (2006), pp. 435–445.

N. Novkovski, E. Atanassova, Injection of holes from the silicon substrate in Ta2O5 films grown on silicon, Appl. Phys. Lett., 85 (2004), pp. 3142–3144.

N. Novkovski, E. Atanassova, Origin of the stress-induced leakage currents in Al-Ta2O5/SiO2-Si structures, Appl. Phys. Lett., 86 (2005), pp. 152104-1–152104-3.

N. Novkovski, Physical modeling of electrical and dielectric properties of high- Ta2O5 based MOS capacitors on silicon, FactaUniversitatis: Electro-nics and Energetics, 27 (2014), pp. 259–273.

Y. Kamata, High-k/Ge MOSFETs forfuture nano-electronics, Materials Today, 11 (2008), pp. 30–38.

Sh. P. Pavunny, J. F. Scott, R. S. Katiyar, Lantha-num Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices, Materials, 7 (2014), pp. 2669−2696.

J. W. Zhang, G. He, H. S. Chen, J. G. Lv, J. Gao, R. Ma, M. Liu, Z. Q. Sun, Comparison of mictrostruc-ture and electrical characteristics of sputtering-derived HfGdO/HfTiO and HfTiO/HfGdO gate stacks, Ceramics International, 41 (2015), pp. 10216–10221.

L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, B. Hudec, K. Hušeková, K. Fröhlich, J. Aarik, Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors, Thin Solid Films, 565 (2014), pp. 19–24.

X. Zhang, H. Tu, Y. Guo, H. Zhao, M. Yang, F. Wei, Y. Xiong, Z. Yang, J. Du, W. Wang, Atomic configuration of the interface between epitaxial Gd doped HfO2 high k thin films and Ge(001) sub-strates, J. Appl. Phys., 111 (2012), pp. 014102-1−014102-4.

E. Atanassova, A. Paskaleva, D. Spassov, Doped Ta2O5 and mixed HfO2–Ta2O5 films for dynamic memories applicationsat the nanoscale, Microelec-tron. Reliab., 52 (2012), pp. 642–650.

B.-Y. Tsui, H.-H. Hsu, C.-H. Cheng, High-performance metal–insulator–metal capacitors with HfTiO/Y2O3 stacked dielectric, IEEE Elec-tron. Dev. Lett., 31 (2010), pp. 871−877.

P. F. Zhang, R. E. Nagle, N. Deepak, I. M. Povey, Y. Y. Gomeniuk, E. O’Connor, N. Petkov, M. Schmidt, T. P. O’Regan, K. Cherkaoui, M. E. Pemble, P. K. Hurley, R. W. Whatmore, The struc-tural and electrical properties of the SrTa2O6/In0.53Ga0.47As/InP system, Microelectron. Eng., 88 (2011), pp. 1054–1057.

J. A. Caraveo-Frescas, M. N. Hedhili, H. Wang, U. Schwingenschlögl, H. N. Alshareef, Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers, Appl. Phys. Lett., 100 (2012), pp. 102111-1−102111-4.

J. Tao, C. Z. Zhao, C. Zhao, P. Taechakumput, M. Werner, S. Taylor, P. R. Chalker, Extrinsic and In-trinsic Frequency Dispersion of High- Materials in Capacitance-Voltage Measurements, Materials, 5 (2012), pp. 1005-1032.

N. Novkovski, E. Atanassova, Frequency de-pendence of the effective series capacitance of metal-Ta2O5/SiO2-Si structures, Semicond. Sci. Technol., 22 (2007), pp. 533–536.

N. Novkovski, E. Atanassova, Peculiarities of ca-pacitance measurements of nanosized high- di-electrics: case of Ta2O5, J. Optoelectron. Adv. Mat.-Symposia, 1 (2009), pp. 398–403.

N. Novkovski, A. Skeparovski, E. Atanassova, Charge trapping effect at the contact between a high-work-function metal and Ta2O5 high-di-electric, J. Phys. D: Appl. Phys., 41 (2008), pp. 105302-1−105302-4.

L. Stojanovska-Georgievska, N. Novkovski, E. Atanassova, Charge trapping at Pt/high- dielec-tric (Ta2O5) interface, Physica B: Condensed Mat-ter, 406 (2011), pp. 3348–3353.

N. Novkovski, Determination of interface states in metal (Ag, TiN, W)-Hf : Ta2O5/SiOxNy-Si struc-tures by different compact methods, Materi. Sci. Semicond. Proc., 39 (2015), pp. 308–317.

C. Zhao, C. Zh. Zhao, St. Taylor, P. R. Chalker, Review on Non-Volatile Memory with High-k Dielectrics:Flash for Generation Beyond 32 nm, Materials,7 (2014), pp. 5117–5145.

J.-C. Wang, C.-T. Lin, P.-C. Chou, C.-S. Lai, Gadolinium-based metal oxide for nonvolatile memory applications, Microelectron. Reliab., 52 (2012), pp. 635–641.

S. K. Ray, S. Maikap, W. Banerjee, S. Das, Nanocrystals for silicon-basedlight-emitting and memory devices, J. Phys. D: Appl. Phys., 46 (2013), 153001-1–153001-31.

D. B. Strukov, H. Kohlstedt, Resistive switching phenomena in thin films: Materials, devices, and applications, MRS Bull., 377 (2012), pp. 108–114.

M. Lanza, A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope, Ma-terials, 7 (2014), pp. 2155–2182.

J. Robertson, R. M. Wallace, High-K materials and metal gates for CMOS applications, Mater. Sci. Eng. R., 88 (2015), pp. 1–41.

N. Novkovski, E. Atanassova, Leakage current characteristics of metal (Ag, TiN, W)-Hf : Ta2O5/Si-OxNy–Si structures, Mater. Sci.Semicond. Proc.,29 (2015), pp. 345–350.

M. Irimia-Vladu, ‘‘Green’’ electronics: biodegrada-ble and biocompatible materials and devices for sus-tainable future, Chem. Soc. Rev., 43 (2014), pp. 588−610.

T. Zhang, X. P. Wang, Q. F. Fang, X. G. Li, Magnetic and charge ordering in nanosized manganites, Appl. Phys. Rev., 1 (2014), pp. 031302-1–031302-21.

J. S. Andrew, J. D. Starr, M. A. K. Budi, Prospects for nanostructured multiferroic composite mate-rials, Scripta Materialia, 74 (2014), pp. 38–43.




DOI: http://dx.doi.org/10.20903/csnmbs.masa.2015.36.2.70

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
mail: manu@manu.edu.mk
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.