### SOME WEAKER FORMS OF SMOOTH FUZZY CONTINUOUS FUNCTIONS

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

M. K. Chakraborty and T. M. G. Ahsanullah, Fuzzy topology on fuzzy sets and tolerance topology, Fuzzy. Sets. Syst., 45 (1992), 103–108.

C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–189.

A. K. Chaudhuri and P. Das, Some results on fuzzy topology on fuzzy sets, Fuzzy. Sets. Syst., 56 (1993), 331–336.

K. C. Chattopadhyay, and S. K. Samanta, Fuzzy to-pology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy. Sets. Syst., 54 (1993), 207–212.

M. A. FathAlla and F. S. Mahmoud, Fuzzy topology on fuzzy sets, Functions with Fuzzy closed graphs, strong fuzzy closed graphs, J. Fuzzy. Math., 9 (2001), 525–533.

S. Ganguly and S. Saha, A note on δ -continuity and δ-connected sets in fuzzy set theory, Bull. Belg. Math. Soc. Simon Stevin., 62 (1988), 127–141.

I. M. Hanafy, F. S. Mahmoud and M. M. Khalaf, Fuzzy topology on fuzzy sets: fuzzy γ-continuity and fuzzy γ-retracts, Int. J. Fuzzy Log. Intell. Syst., 5 (2005), 29–34.

U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy. Sets. Syst., 73 (1995), 131–149.

C. Kalaivani and R. Roopkumar, Fuzzy proper func-tions and net-convergence in smooth fuzzy topolog-ical space, Ann. Fuzzy. Math. Inform., 6 (2013), 705–725.

C. Kalaivani and R. Roopkumar, Fuzzy perfect mappings and Q-Compactness in smooth fuzzy top-ological spaces, Fuzzy Inf. Eng., 6 (2014), 115 - 131.

C. Kalaivani and R. Roopkumar, A new closure op-erator and some kinds of fuzzy super continuous functions on smooth fuzzy topological spaces, Ann. Fuzzy. Math. Inform., 9 (2015), 649–663.

Y. C. Kim and Y. S. Kim, Fuzzy R-cluster and fuzzy R-limit points, Kangweon-Kyungki Math. J., 8 (2000), 63–72.

Y. J. Kim and J. M. Ko, Fuzzy semi-regular spaces and fuzzy δ-continuous functions, Int. J. Fuzzy Log. Intell. Syst., 1 (2001), 69–74.

Y. C. Kim and J. M. Ko, Fuzzy G-closure operators, Commun. Korean. Math. Soc., 18 (2003), 325–340.

Y. C. Kim and J. W. Park, R-fuzzy δ-closure and r-fuzzy θ-closure sets, Int. J. Fuzzy Log. Intell. Syst., 10 (2000), 557–563.

T. Kubiak and A. P. Šostak, Lower set-valued fuzzy topologies, Quaest. Math., 20 (1997), 423–429.

S. J. Lee and Y. S. Eoum, Fuzzy r-pre-semineigh-borhoods and fuzzy r-pre-semi continuous maps, Int. J. Fuzzy Log. Intell. Syst., 1 (2001), 62–68.

S. J. Lee and E. P. Lee, Fuzzy r-preopen and fuzzy r-precontinuous maps, Bull. Korean. Math. Soc., 36 (1999), 91–108.

S. J. Lee and E. P. Lee, Fuzzy r-continuous and fuzzy r-semicontinuous maps, Int. J. Math. Sci., 27 (2001), 53–63.

F. S. Mahmoud, M. A. FathAlla and S. M. AbdEllah, Fuzzy topology on fuzzy sets: fuzzy semicontinuity and fuzzy semiseparation axioms, Appl. Math. Com., 153 (2004), 127–140.

W. K. Min and C. K. Park, R-semi-generalized fuzzy continuous maps, Kangweon-Kyungki Math. J., 15 (2007), 27–37.

C. K. Park, W. K. Min and M. H. Kim, Weak smooth α-structure of smooth topological spaces, Commun. Korean Math, Soc., 19 (2004), 143–153.

A. A. Ramadan, M. A. FathAlla and S. E. Abbas, Smooth fuzzy topology on fuzzy sets, J. Fuzzy Math., 10 (2002), 59–68.

S. E. Rodabaugh, Categorical foundations of varia-ble-basis fuzzy topology, in: U. Höhle, S. E. Roda-baugh (Eds.), Mathematics of fuzzy sets: Logic, to-pology, and measure theory, in: handbooks of fuzzy sets series, Kluwer Academic Publishers, 1999, pp. 273–388.

S. E. Rodabaugh, Powerset operator foundations for Poslat fuzzy set theories and topologies, in: U. Höhle, S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: Logic, topology, and measure theory, in: the handbooks of fuzzy sets series, Kluwer Aca-demic Publishers, 1999, pp. 91–116.

R. Roopkumar and C. Kalaivani, Continuity of fuzzy proper function on Šostak’s I-fuzzy topologi-cal spaces, Commun. Korean Math. Soc., 26(2) (2011), 305–320.

R. Roopkumar and C. Kalaivani, Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces, Math. Bohem., 137(3) (2012), 311–332.

A. P. Šostak, On fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II., 11 (1985), 89–103.

DOI: http://dx.doi.org/10.20903/csnmbs.masa.2015.36.2.77

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.

**Contact details**

Bul. Krste Misirkov br.2

1000 Skopje, Republic of Macedonia

**Tel.**++389 2 3235-400

**cell:**++389 71 385-106

**mail:**manu@manu.edu.mk

**About the journal**

CSNMBS is a part of the MASA

**Contribution**series. Published by the Section Natural, Mathematical and Biotechnical Sciences.

**About this site**

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.

Site (including the theme) set, adapted by MASA - CSIT.