Aleksandra Ivanoska-Dacikj, Gordana Bogoeva-Gaceva, Sven Wießner, Gert Heinrich


This work describes the preparation and characterization of complex natural rubber (NR) based composites containing hybrid nano- and conventional fillers intended for base seismic application. Thorough rheometric and dy-namic mechanical analyses in strain sweep mode at 2 Hz and 10 Hz (two frequencies laying in the range 0 – 15 Hz in which most of the earthquakes have the dominant frequencies) were performed on complex natural rubber (NR) based composites containing hybrid nanofiller (carbon nanotubes, expanded montmorillonite) and different amounts of con-ventional fillers like carbon black (CB) and silica. The rheometric studies showed that the influence of the combina-tion of the different fillers on curing parameters is quite complex, but mainly the introduction of the fillers reduces the scorch and optimum cure time of the compounds. The dynamic mechanical analysis showed a pronounced non-linear strain dependence of the storage modulus and a remarkable increase of the loss factor tanδ for all composites, espe-cially for those containing high CB content, compared to the NR-gum. To describe this strain-dependency of the stor-age modulus the cluster-cluster aggregation (CCA) model was used. The values of the fitting parameters ΔE’0, γc, and E’∞ calculated by this model show that they are affected by the type of the fillers present in the NR matrix and also by the applied frequency.


natural rubber; hybrid composites; rheometric study; filler networking; Payne effect

Full Text:



A. Ivanoska-Dacikj, G. Bogoeva-Gaceva, A. Buzarovska, I. Gjorgjiev, Lj. Raka, Preparation and properties of natural rubber/organo-montmo-rillonite: from lab samples to bulk material, Maced. J. Chem. Chem. En., 33 (2) (2014), pp. 249–265.

S. B. Eshwaran, D. Basu, S. R. Vaikuntam, B. Kutlu, S. Wiessner, A. Das, K. Naskar, G. Hein-rich, Exploring the role of stearic acid in modified zinc aluminum layered double hydroxides and their acrylonitrile butadiene rubber nanocompo-sites, J. Appl. Polym. Sci., 132 (2015) 41539.

M. Galimberti, S. Giudice, V. Cipolletti, G. Guer-ra, Control of organoclay structure in hydrocarbon polymers, Polym. Advan. Technol., 21 (2010), pp. 679–684.

A. Das, K. W. Stöckelhuber, R. Jurk, D. Jehnichen, G. Heinrich, A general approach to rubber–montmorillonite nanocomposites: Interca-lation of stearic acid, Appl. Clay. Sci., 51 (2011), pp. 117–125.

S. Rooj, A. Das, K. W. Stöckelhuber, U. Reuter, G. Heinrich, Highly exfoliated natural rubber/clay com-posites by ‘‘propping-open procedure’’: the influence of fatty acid chain length on exfoliation, Macromol. Mater. Eng., 297 (4) (2012), pp. 369–383.

S. Rooj, A. Das, K. W. Stöckelhuber, N. Mukho-padhyay, A. R. Bhattacharyya, D. Jehnichen et al., Pre-intercalation of long chain fatty acid in the in-terlayer space of layered silicates and preparation of montmorillonite/natural rubber nanocomposites, Appl. Clay. Sci., 67 (2012) pp. 50–56.

A. Usuki, A. Tukigase, M. Kato, Preparation and properties of EPDM-clay hybrids, Polymer, 43 (8) (2002), pp. 2185–2189.

R. Magaraphan, W. Thaijaroen, R. Lim-Ochakun, Structure and properties of natural rubber and modified montmorilonite nanocomposites, Rubber. Chem. Technol., 76 (2) (2003), pp. 406–418.

M. A. López-Manchado, B. Herrero, M. Arroyo, Organoclay-natural rubber nanocomposites syn-

thesized by mechanical and solution mixing meth-ods, Polym. Int., 53 (2004), pp. 1766–1772.

S. Varghese, J. Karger-Kocsis, Natural rubber-based nanocomposites by latex compounding with layered silicates, Polymer, 44 (2003), pp. 4921–4927.

M. Hoikkanen, M. Poikelispää, A. Das, M. Honkanen, W. Dierkes, J. Vuorinen, Effect of mul-tiwalled carbon nanotubes on the properties of EPDM/NBR dissimilar elastomer blends, Polym.-Plast. Technol., 54 (2015), pp. 402–410.

H. H. Le, S. Abhijeet, S. Ilisch, J. Klehm, S. Henning, M. Beiner, S. S. Sarkawi, W. Dierkes, A. Das, D. Fischer, K. W. Stöckelhuber, S. Wießner, S. P. Khatiwada,R. Adhikari, T. Pham, G. Hein-rich, H. J. Radusch, The role of linked phospholip-ids in the rubber-filler interaction in carbon nano-tube (CNT) filled natural rubber (NR) composites, Polymer, 55 (2014), pp. 4738–4747.

H. H. Le, M. Parsekar, S. Ilisch, S. Henning, A. Das, K. W. Stöckelhuber, M. Beiner, C. A. Ho, R. Adhikari, S. Wießner, G. Heinrich, H. J. Radusch, Effect of non-rubber components of NR on the carbon nanotube (CNT) localization in SBR/NR blends, Macromol. Mater .Eng., 299 (2014), pp. 569–582.

N. Mahmood, A. U. Khan, M. S. Khan, K. W. Stöckelhuber, A. Das, D. Jehnichen, G. Heinrich, Carbon nanotubes filled thermoplastic polyure-thane-urea and carboxylated acrylonitrile butadi-ene rubber blend nanocomposites, J. Appl. Polym. Sci., 131 (2014) 40341.

H. H. Le, M. Sriharish, S. Henning, J. Klehm, M. Menzel, W. Frank, S. Wießner, A. Das, K. W. Stöckelhuber, G. Heinrich, H. J. Radusch, Disper-sion and distribution of carbon nanotubes in ter-nary rubber blends, Compos. Sci. Technol., 90 (2014), pp. 180–186.

A. Das, K. W. Stöckelhuber, R. Jurk, M. Saphi-annikova, J. Fritzsche, H. Lorenz et al., Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends, Polymer, 49 (24) (2008), pp. 5276–5283.

H. Dai, Carbon nanotubes: opportunities and chal-lenges, Surf. Sci., 500 (2002), pp. 218–241.

M. Galimberti, V. Kumar, M. Coombs, Cipolletti V. et. al., Filler networking of a nanographite with a high shape anisotropy and synergism with car-bon black in poly(1,4-cisisoprene)–based nano-composites, Rubber Chem. Technol., 87 (2014), pp. 197–218.

P. K. Chattopadhyay, N. C. Das and S. Chatto-padhyay, Influence of interfacial roughness and the hybridfiller microstructures on the properties of ternary elastomeric composites, Compos. Part A-Appl. S., 42 (2011), pp. 1049–1059.

A. Malas, C. K. Das, Carbon black–clay hybrid nanocomposites based upon EPDM elastomer, J. Mater. Sci., 47 (2012), pp. 2016–2024.

M. Galimberti, M. Coombs, V. Cipolletti et. al., Enhancement of mechanical reinforcement due to hybridfiller networking promoted by an organo-clay in hydrocarbon-based nanocomposites, Appl. Clay. Sci., 65–66 (2012), pp. 57–66.

A. Ivanoska-Dacikj, G. Bogoeva-Gaceva, S. Rooj, G. Heinrich, S. Wießner. Fine tuning of the dy-namic mechanical properties of natural rub-ber/carbon nanotube nanocomposites by organical-ly modified montmorillonite: A first step in obtain-ing high-performance damping material suitable for seismic application, Appl. Clay. Sci., 118 (2015), pp. 99–106.

M. J. Wang, The role of filler networking in dy-namic properties of filled rubber, Rubber Chem. Technol., 72 (1999), pp. 430–448.

Z. E. Erisen and E. Cigeroglu, Frequency domain optimization of dry friction dampers on buildings under harmonic excitation, in: J. Caicedo, F. N. Catbas, A. Cunha, V. Racic, P. Reynolds, K. Sal-yards (Eds.), Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, Springer; 2012, pp. 113–126.

A. K. Ghosh, A. Das, D. K. Basu, Effect of Bis(di-isopropyl)thiophosphoryl disulfide on the cov-ulcanization of styrene–butadiene rubber and eth-ylene–propylene–diene (monomer) blends, J. Appl. Polym. Sci., 92 (2004), pp. 123–142.

F. Cataldo, O. Ursini, G. Angelini, MWCNTs Elastomer nanocomposite, Part 1: The addition of MWCNTs to a natural rubber-based carbon black-

filled rubber compound, Fuller. Nanotub. Car. N., 17 (2009), pp. 38–54.

R. Verdejo, M. Hernandez, N. Bitnis, J. M. Kenny, M. A. Lopez-Manchando, Vulcanization character-istics and curing kinetics of rubber-organoclay nanocomposites, in: M. Galimberti (Ed.), Rubber Clay Nanocomposites – Science, Technology and Applications, New York: Wiley and Sons; 2011, pp. 275–303.

S. S. Choi, C. Nah, B. W. Jo, Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion, Polym. Int., 52 (2003), pp. 1382–1389.

N. Rattanasom, T. Saowapark, C. Deeprasertkul, Reinforcement of natural rubber with silica/carbon black hybrid filler, Polym. Test., 26 (2007), pp. 369–377.

A. R. Payne, The dynamic properties of carbon black-loaded natural rubber vulcanizates, Part I, J. Appl. Polym. Sci., 6 (1962), pp. 57–63.

A. R. Payne and R. E. Whittaker, Influence of hys-teresis on tensile and fatigue failure in rubbers, J. Appl. Polym. Sci., 15 (1971), pp. 1941–1948.

G. Heinrich, M. Klüppel, Recent advances in the theory of filler networking in elastomers, in: K.S. Lee (Ed.), Filled elastomers drug delivery systems series: Advances in polymer science, Vol 160, Springer, Berlin, 2002, pp. 1–44.

Y. Kantor and I. Webman, Elastic properties of random percolating systems, Phys. Rev. Lett., 52 (1984), pp. 1891–1894.

J. H. Bachmann, J. W. Sellers, M. P. Wagner, R. F. Wolf, Fine particle reinforcing silicas and sili-cates in elastomers, Rubber Chem. Technol., 32 (1959), pp. 1286–1391.

DOI: http://dx.doi.org/10.20903/csnmbs.masa.2016.37.1.78


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
mail: manu@manu.edu.mk
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.