Valia Nikolova, Boris Galabov


The quality of theoretical prediction of O-H stretching frequency shifts upon π-hydrogen bonding is analyzed for series of ten complexes between monosubstituted phenols and hexamethylbenzene. Computed O-H frequencies from density functional theory computations at B3LYP/6-311++G(2df,2p) were compared with literature spectroscopic data. The results reveal that the applied theoretical method predicts with an excellent accuracy the O-H frequency shifts [Δυ(OH)] upon π-hydrogen bond formation. Comparisons with analogous theoretical and experimental data for benzene complexes with substituted phenols reveal the magnitude of the methyl groups’ hyperconjugative effects on interaction energies and frequency shifts. The induced by phenol substituents variations in bonding energies and Δυ(OH) are ra-tionalized using theoretically evaluated and experimental parameters.


π-hydrogen bonding; hexamethylbenzene; substituted phenols; O-H frequency; DFT computations

Full Text:



G. C. Pimental, A. L. McClellan, The Hydrogen Bond; Freeman: San Francisco, 1960.

G. A. Jeffrey, An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

S. J. Grabowski, Hydrogen Bonding: New Insights; Springer: New York, 2006.

S. Scheiner, Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, New York, 1997.

D. I. Bower, F. Maddams, The Vibrational Spec-troscopy of Polimers, Cambridge University Press, 1989.

S. V. Pejov, B. Soptrajanov, The influence of N–H⋯π hydrogen bonding on the anharmonicity of the ν(N–H) mode and orientational dynamics of nearly continuously solvated indole, J. Mol. Struct. 555, 363–373 (2000).

S. V. Pejov, B. Soptrajanov, Experimental and quantum chemical study of pyrrole self-association through N–H⋯π hydrogen bonding, J. Mol. Struct. 649, 231–243 (2003).

J. R. Zheng, M. D. Fayer, Hydrogen bond lifetimes and energetics for solute/solvent complexes studied with 2D-IRvibrational echo spectroscopy, J. Am. Chem. Soc. 129, 4328–4335 (2007).

M. Levitt, M. F. Perutz, Aromatic Rings Act as Hy-drogen Bond Acceptors, J. Mol. Biol., 201, 751–754 (1988).

G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: New York, 2001.

F. B. Sheinerman, B. Honig, On the Role of Elec-trostatic Interactions in the Design of Protein–Pro-tein Interfaces, J. Mol. Biol. 318, 161–177 (2002).

H. -J. Schneider, A. K. Yatsimirski, Principles and Methods in Supramolecular Chemistry; Wiley: Chichester, UK, 2000.

C. A. Hunter, K. R. Lawson, J. Perkins, C. Urch, Aromatic interactions, J. Chem. Soc.,Perkin Trans. (2), 651–669 (2001).

R. R. Knowles, E. N. Jacobsen, Attractive noncova-lent interactions in asymmetric catalysis: links be-tween enzymes and small molecule catalysts, Proc. Natl. Acad. Sci. U.S.A., 107, 20678–20685 (2010).

J. P. Seguin, L. Nadjo, R. Uzan, J. P. Doucet, Phe-nols-methylbenzenes associations : a general treat-ment relating ΔνOH to the distribution of charges on the electron donors and acceptors, Spectrochim. Acta A 37A, 205–210 (1981).

V. Nikolova, S. Ilieva, B. Galabov, H. F.Schaefer III, Experimental Measurement and Theory of Sub-stituent Effects in π-Hydrogen Bonding: Com-plexes of Substituted Phenols with Benzene, J. Org. Chem. 79, 6823–6831 (2014).

C. A. Hunter, J. K. M. Sanders, The nature of .pi.-.pi. interactions, J. Am. Chem. Soc. 112, 5525–5534 (1990).

S. L. Cockroft, J. Perkins, C. Zonta, H. Adams, S. E. Spey, C. M. R. Low, J. G. Vinter, K. R. Lawson, C. J. Urch, C. A. Hunter, Substituent effects on ar-omatic stacking interactions, Org. Biomol. Chem. 5, 1062–1080 (2007).

S. E. Wheeler, K. N. Houk, Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene, J. Am. Chem. Soc. 130, 10854–10855 (2008).

S. E. Wheeler, Understanding substituent effects in noncovalent interactions involving aromatic rings, Acc. Chem. Res. 46, 1029–1038 (2013).

M. O. Sinnokrot, C. D. Sherrill, Unexpected Sub-stituent Effects in Face-to-Face π-Stacking Interac-tions, J. Phys. Chem. A 107, 8377–8379 (2003).

M. O. Sinnokrot, C. D. Sherrill, Substituent Effects in π-π Interactions: Sandwich and T-Shaped Con-figurations, J. Am. Chem. Soc. 126, 7690–7697 (2004).

A. L. Ringer, C. D. Sherrill, Substituent Effects in Sandwich Configurations of Multiply Substituted Benzene Dimers Are Not Solely Governed By Elec-trostatic Control, J. Am. Chem. Soc. 131, 4574–4575 (2009).

E. C. Lee, D. Kim, P. Jurecka, P. Tarakeshwar, P. Hobza, K. S. Kim, Understanding of assembly phe-nomena by aromatic-aromatic interactions: benzene dimer and the substituted systems, J. Phys. Chem. A 111, 3446–3457 (2007).

SAPT2012, R. Bukowski et al., Chem. Rev. 94, 1887–1930 (1994).

M. Saggu, N. M. Levinson, S. G. Boxer, Direct Measurements of Electric Fields in Weak OH••π Hydrogen Bonds, J. Am. Chem. Soc., 133, 17414–17419 (2011).

M. Saggu, N. M. Levinson, S. G. Boxer, Experi-mental quantification of electrostatics in X-H···π hydrogen bonds, J. Am. Chem. Soc. 134, 18986–18997 (2012).

J. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, M. D. Fayer, Ultrafast Dynamics of Solute-Solvent Complexation Observed at Thermal Equilibrium in Real Time, Science 309, 1338–1343 (2005).

J. Zheng, M. D. Fayer, Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Stud-ied with 2D-IR Vibrational Echo Spectroscopy, J. Am. Chem. Soc. 129, 4328–4335 (2007).

P. Banerjee, T. Chakraborty, Correlation of OH Spectral Shifts of Phenol–Benzene O–H Hydrogen-Bonded Complexes with Donor’s Acidity, J. Phys. Chem. A 118, 7074–7084 (2014).

P. P. Zhou, X. Yang, D. G. Zhou, S. Liu, T-shaped phenol–benzene complexation driven by π-in-volved noncovalent interactions, Theor. Chem. Acc. 135:100 (2016).

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, J. Chem. Phys. 98, 5648–5652 (1993).

A. D. Becke, A new mixing of Hartree-Fock and lo-cal density-functional theories, J. Chem. Phys. 104, 1040–1046 (1996).

C. T. Lee, W. T. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785–789 (1988).

(a) A. D. McLean, G. S. Chandler, Contracted Gaussian basis sets for molecular calculation. I. Second raw atoms, Z=11-18, J. Chem. Phys. 72, 5639-5649 (1980); (b) R. Krishnan, J. S. Binkley, R.Seeger, J. A. Pople, Self-consistent molecular or-bital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72, 650-655 (1980); (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F , J. Comp. Chem., 4, 294–301 (1983).

M. J. Frisch et al. Gaussian 09 (Revision-A.02); Gaussian, Inc., Wallingford CT, 2009.

S. F. Boys, F. Bernardi, Calculation of small molec-ular interactions by differences of separate total en-ergies–some procedures with reduced errors, Mol. Phys. 19, 553–566 (1970).

J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105, 2999–3093 (2005).

(a) A. E. Reed, R. B. Weinstock, F. Weinhold, Nat-ural Population Analysis, J. Chem. Phys. 83, 735-746 (1985); (b) A. E. Reed, L. A. Curtiss, F. Wein-hold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88, 899–926 (1988).

F. L. Hirshfeld, Bonded-atom fragments for de-scribing molecular charge densities, Theor. Chem. Acc. 44, 129–138 (1977).

E. B. Wilson, Four–dimensional electron density function, J. Phys. Chem. 36, 2232–2233 (1962).

P. Bobadova-Parvanova, B. Galabov, Ab initio mo-lecular-orbital study of hydrogen-bonded com-plexes of carbonyl aliphatic compounds with hydro-gen fluoride, J. Phys. Chem. A, 102, 1815–1819 (1998).

B. Galabov, P. Bobadova-Parvanova “Molecular electrostatic potential as reactivity index in hydro-gen bonding: an initio molecular orbital study of complexes of nitrile and carbonyl compounds with hydrogen fluoride”, J. Phys. Chem. A, 103, 6793–6799 (1999).

B. Galabov, P. Bobadova-Parvanova, Molecular electrostatic potential as reactivity index in hydro-gen bond formation: an HF/6-31+G(d) study of hy-drogen-bonded (HCN) n clusters, n=2,3,4,5,6,7, J. Mol. Struct., 550–551, 93–98 (2000).

V. Dimitrova, S. Ilieva, B. Galabov Electrostatic potential at atomic sites as a reactivity descriptor for hydrogen bonding. Complexes of monosubstituted acetylenes and ammonia, J. Phys. Chem. A, 106, 11801–11805 (2002).

B. Galabov, P.Bobadova-Parvanova, S. Ilieva, V.Dimitrova, The electrostatic potential at atomic sites as a reactivity index in the hydrogen bond for-mation, J. Mol. Struct. Theochem, 630, 101–112 (2003).

B. Galabov, S. Ilieva, H. F. Schaefer An efficient computational approach for the evaluation of sub-stituent constants, J. Org. Chem. A, 71, 6382–6387 (2006).

B. Galabov, S. Ilieva, B. Hadjieva, Y. Atanasov, H. F. Schaefer Predicting reactivities of organic mole-cules. Theoretical and experimental studies on the aminolysis of phenyl acetates, J. Phys. Chem. A, 112, 6700–6707 (2008).

B. Galabov, V. Nikolova, J. J. Wilke, H. F. Schaefer, W. D. Allen, Origin of the SN2 benzylic effect, J. Am. Chem. Soc., 130, 9887–9896 (2008).

B. Galabov, S. Ilieva, G. Koleva, W. D. Allen, H. F. Schaefer, P. v. R. Schleyer Structure-Reactivity Relationships for Aromatic Molecules: Applicationof the Electrostatic Potential at Nuclei and Electro-phile Affinity Electronic Indices, WIREs Comput. Mol. Sci., 3, 37–55 (2013).

B. Galabov, V. Nikolova, S. Ilieva, Does the Mo-lecular Electrostatic Potential Reflect the Effects of Substituents in Aromatic Systems?, Chem.-Eur. J., 19, 5149–5155 (2013).

N. Sadlej-Sosnowska, Ab initio study of charge transfer between lithium and para-disubstituted benzenes, Structural chemistry, 27, (3), 801–807 (2016).

H. Szatylowicz, N. Sadlej-Sosnowska, Characteriz-ing the Strength of Individual Hydrogen Bonds in DNA Base Pairs, Journal of chemical information and modeling, 50 (12) 2151-2161 (2010).

N. Sadlej-Sosnowska, Transfer of Electron Density as a Result of Hydrogen Bond Formation-A Case of Charged Complexes , International journal of quantum chemistry, 110 (7), 1354–1359 (2010).

N. Sadlej-Sosnowska, Substituent active region - a gate for communication of substituent charge with the rest of a molecule: Monosubstituted benzenes, Chem. Phys. Lett. 447 (4–6), 192–196 (2007).

N. Sadlej-Sosnowska, Molecular similarity based on atomic electrostatic potential, J. Phys. Chem., 111 (43), 11134–11140 (2007).

N. Mohan, C. H. Suresh, A Molecular Electrostatic Potential Analysis of Hydrogen, Halogen, and Di-hydrogen Bonds, J. Phys. Chem. A 118 (9), 1697–1705 (2014).

F. B. Sayyed, C. H. Suresh, NMR characterization of substituent effects in cation-p interactions, Chemical Physics Letters, 523, 11-14 (2012).

F. B. Sayyed, C. H. Suresh, Accurate prediction of cation-pi interaction energy using substituent ef-fects, Journal of Physical Chemistry A 116 (23), 5723-5732 (2012).

F. B. Sayyed, C. H. Suresh, Substituent effects in cation-p interactions: A unified view from induc-tive, resonance, and through-space effects, Journal of Physical Chemistry A 115 (22), 5660-5664 (2011).

P. Politzer, D. G. Truhlar, Chemical applications of atomic and molecular electrostatic potentials, Ple-num Press: New York, 1981.

P. Hobza, Z. Havlas, Blue-Shifting Hydrogen Bonds, Chem. Rev. 100, 4253-4264 (2000).

J. W. G. Bloom, R. K. Raju, and S. E. Wheeler, Physical Nature of Substituent Effects in XH/π Interactions , J. Chem. Theory Comput. 8, 3167 (2012).

(a)J. A. Dean, Lange’s Handbook of Chemistry, 15th Ed.; McGraw-Hill: New York, 1999;(b) J. E. Bartmess, Negative Ion Energetics Data; in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2000 ed., (c) W. G. Mallard, P. J. Lindstrom., Eds.; National Institute of Stand-ards and Technology: Gaithersburg, MD, 2005;



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact details

Bul. Krste Misirkov br.2
1000 Skopje, Republic of Macedonia
Tel. ++389 2 3235-400
cell:++389 71 385-106
About the journal

CSNMBS is a part of the MASA Contribution series. Published by the Section Natural, Mathematical and Biotechnical Sciences.
About this site

Maintained by the Researh center for Materials and Enviroment - MANU/MASA.
Site (including the theme) set, adapted by MASA - CSIT.