COMPARATIVE RESEARCH ON ANTIOXIDANT CONTENT IN THE FRUITSOF SELECT INDIGENOUS VARIETIES OF FRUITS, GRAPES AND VEGETABLES
DOI:
https://doi.org/10.20903/masa/nmbsci.2021.42.10Abstract
In this research study, we presented the results of the chemical analysis conducted on fruits of indigenous varieties and populations of several fruit species, namely cherries, pomegranates and apples, as well as grapes and vegetables such as pep-pers and tomatoes. Among the samples analyzed, the pepper populations exhibited the highest concentration of vitamin C, measured at 51.25 mg/100g. Conversely, the lowest levels of vitamin C were observed in apples and grapes, approximately 9 mg/100g. When considering the overall antioxidant activity, tomatoes and peppers displayed the largest proportion of vitamin C, accounting for over 75 mg/100g. Furthermore, the highest quantity of anthocyanins was found in cherries, specifically 394.30 mg/kg FW (FW = Fresh Weight). Pomegranate varieties exhibited the greatest content of total phenols, measuring 5359.43 mg/kg FW, along with the highest fruit antioxidant activity, showing 81.58 % inhibition. As for apple varieties, they contained the highest amount of flavan-3-ols, reaching 517.98 mg/kg FW.
Our analysis revealed a positive correlation between total phenols and antioxidant activity, as well as between total phenols and flavan-3-ols. Additionally, a moderate negative correlation was identified between vitamin C and flavan-3-ols.
References
Alcalde-Eon C., García-Estévez I., Puente V., Ri-vasv-Gonzalo J. C., Escribano-Bailón M. T. (2014) Color stabilization of red wines. A chemical and colloidal approach. J. Agric.Food Chem. 62.
Bassi M., Lubes G., Bianchi F., Agnolet S., Ciesa F., Brunner K., Guerra W., Robatscher P., Oberhu-ber M. (2017). Ascorbic acid content in apple pulp, peel and monovarietal cloudy juices of 64 different cultivars. Intern. Journal of Food properties, vol. 20, 3: 2626–2634.
Biljana Korunoska (2007). „Ampelographic identi- fication, study and collection of autochthonous va- rieties of vines in the Republic of Macedonia‟. Doctoral dissertation. Skopje.
Block G., Patterson B., Subar A. (1992). Fruit, veg- etable and cancer prevention: a review of the epi- demiological evidence. Nutr. Cancer 18 (1): 1–29.
Bourzeix M., Weyland D., Heredia N., Desfeux N. (1986). Etude des catechines et des procyanidols de la grappe de raisin, du vin et d’autres derives de la vigne. Bull. O.I.V. 59: 1171–1254.
Boyer J., Liu H. R. (2004). Apple phytochemicals and their health benefits. Nutr J, 35: 1–15.
Cevallos-Casals B. A., Byrne D. H., Cisneros-Zevallos L., Okie W. R. (2002). Total phenolic and anthocyanin content in red fleshed peaches and plums. Acta Horticulturae, 592: 589–592.
Ćujić N., Kundaković T., Šavikin K. (2013). Antoci-jani - hemijska analiza i biološka aktivnost. Lek. Sirov, vol. XXXIII, No. 33: 19–37.
Dumlu M. U., Gȕrkan E. (2007). Elemental and nutritional analysis of Punica granatum from Turkey. J. Med. Food, 10 (2): 392–5.
Fernandez-Marin M. I., Mateos R., Garcia-Parrilla M. C., Puertas B., Cantos-Villar E. (2012). Bioac- tive Compounds in Wine: Resveratrol, Hydroxyty- rosol and Melatonin: A Review. Food Chemistry 13: 797–813.
George B., Kaur C. Khurdiya D. S., Kapoor H. C. (2004). Antioxidants in tomato (Lycopersicon escu-lentum) as a function of genotype. Food Chemistry, 84: 45–51.
Goldner K., Michaelis S. V., Neumuller M., Тreut- ter D. (2015). Phenolic contents in fruit juices of plums with different skin colors. Journal of Applied Botany and Food Quality 88, 322–326.
Honda C., Kotoda N., Wada M., Kondo S., Koba-yashi S., Soejima J., Zhang Z., Tsuda T., Moriguchi T. (2002). Anthocyanin biosynthetic genes are coordinately expressed during red coloration in ap-ple skin. Plant Physiology and Biochemistry, 40:955–962.
Иванова В., Димовска В. (2010). Определување на вкупни флаван-3-оли во вина од Македонија. Годишен Зборник, Универзитет Гоце Делчев - Штип, Земјоделски факултет, 45–57.
Jovančević М., Božović Ɖ. (2001). Antocijani pokožice ploda genotipova džanarike za područja Bijelog Polja. Privreda i šumarstvo, vol. 47 (3–4): 49–51, Podgorica.
Kaur C., Kapoor H. C. (2005). Antioxidant activity of some fruits in Indian diet. ISHS Acta Horticul-turae, 696–699.
Krstic B., Tepic A., Nikolić N., Gvozdenovic D., Tomičić M. 2013. Chemical variability of inedible fruit parts in pepper varieties (Capsicum annum L.). Bulgarian Journal of Agricultural science, 19 (No.3): 490 – 496.
Kurina A. B., Solovieva A. E., Кhraphlova I. A., Artemyeva A. M. (2021). Biochemical composition of tomato fruits of various colors. Селекция растении на иммунитет и продуктивность, 25 (5): 514–527.
Lakra A., Trivedi J., Mishra S. (2018). Studies on biochemical composition of various tomato (Sola- num lycopersicum L.) genotypes. Intern. Journal of current microbiology and applied sciences. ISSN: 2319–7706, vol.7, No.2: 977–987.
Landete J. M. (2011). Beneficial and harmful effects of wine consumption on health: Phenolic com-pounds, biogenic amines and ochratoxin A. In Nu-trition and Diet Reserch Progress. Appetite and Weight Loss, 1st ed.; Tsisana, S., Ed.; Nova Science Pub Inc.: New York, NY, USA, pp. 173–206.
Latocha P., Krupa T., Wolosiak R., Worobiej E., Wilczak J. (2010). Antioxidant activity and chemi- cal difference in fruit of different Actinidia sp. In- ternational Journal of Food Sciences and Nutri-tion., vol. 61, issue 381–394.
López-Roca E., Gómez-Plaza E. (2007). The effects of enologicalpractices in anthocyanins, phenolic compounds and wine colour and their dependence on grape characteristics. J. Food Comp. Anal., 20 (7), 546–552.
Macheix J. J., Fleuriet A., Billot J. (1990). Fruit phenolics CRC. Press Inc. Boca Raton, Fl, USA.
Marić S., Lukić M., Radičević S., Mitrović M., Tešović Ž. (2007). Kvalitativna analiza antocijana u pokožici ploda šljive. Journal of Pomology, 41, 160: 53–157.
Markovski A., Gjamovski V., Popovska M. (2017). Investigation of aril characteristics of some autoch- thonous pomegranate (Punica granatum L.) varie-ties in Macedonia. Agroknowledge, vol. 18, issue 2, p. 109–119.
Mattioli R., Francioso A., Mosca L., Silva P. (2020). Anthocyanins: a Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative diseases. Molecules, 25, 3809: 1–42.
Mikulić-Petkovšek M., Stampar F., Veberic R., Sircelj H. (2016). Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds. J. Food Sci, 81 (8) C1928–37.
Osakabe N. (2013). Flavan-3-ols improve metabolic syndrome risk factors: evidence and mechanisms. J. Clin. Biochem. Nutr: 52 (3):186–192.
Panche A. N., Diwan A. D., Chandra S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, vol. 5, e 47: 1–15.
Paz R., Fredes K. (2015). The Encapsulation of Anthocyanins from Berry-Type Fruits. Trends in Foods. Molecules, 20, 5875–5888.
Pineiro Z., Guerrero R. F., Fernández - Marin M. I., Cantos - Villar E., Palma M. (2013). Ultrasound assisted extraction of stilbenoids from grape stems. J. Agric. Food Chem., 61.
Pešić V. et al. (2009).: Sustainable Agricultural Production and Resources Preservation. Interna-tional Scientific Conference „Good practices in sus-tainable agriculture‟, Proceedings, University of Forestry, Sofia, Bulgaria. Volume 1, pp. 158–166.
Raman G., Avendano E., Chen S., Wang J., Matson J. Gayer B., Novotny J., Cassidy A. (2019). Dietary intakes of flavan–3-ols and cardiometabolic healt: systematic review and meta-analysis of randomized trials and prospective cohort studies. The Ameri-can Journal of Clinical Nutrition, vol. 110, issue 5: 1067–1078.
Ratiu I. A., Al-Suod H., Ligor M., Monedeiro F., Buszewski B. (2020). Effects of growth conditions and cultivability on the content of cyclitols in Medicago sativa. Int. J. Environ. Sci. Technol., 18: 33–48.
Rauf A., Imran M., Abu - Izneid T., Ul - Haq I., Patel S., Pan X., Naz S., Silva A. S., Saeed F., Suleria H. A. R. (2019). Proanthocyanidins: A com-prehensive review. Biomedicine & Pharmacothera-py, 116.
Ribéreau-Gayon P., Boidron J. N., Terrier A. (2000). The aroma of Muscat grape variety. J Agric Food Chem 1975; 23: 1042–7.
Rodríguez-Delgado M. A., González-Hernández G., Conde–González J. E, Pérez-Trujillo J. P. (2002) Principal component analysis of the polyphenol content in young red wines. Food Chemistry 78: 523–532.
Селамовска А., Мискоска-Милевска Е. (2021). Овошјето храна и лек. Скопје.
Silva-Beltran N. P., Ruiz–Cruz S., Cira–Chavez L. A., Estrada-Alvarado M. I., Ornelas-Paz J. J., Lopez-Mata M. A., Del–Toro-Sanchez C. L., Aya-la-Zavala J. F., Marquez-Rios E. (2015). Total phe-nolic, flavonoid, tomatine and tomatidine contents and antioxidant and antimicrobial activities of ex-tract of tomato plant. Intern. Journal of Analytic Chemistry, ID 284071; 1–10.
Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Ki-zek R. (2010). Content of Phenolic Compounds and Antioxidant Capacity in Fruits of Apricot geno-types. Molecules, 15, 6285–6305.
Sun B. H., Francis F. J., (1967). Apple anthocya-nins: Identification of cyaniding–7-arabinoside. Journal of Food Science, 32: 647–649.
Tešović Ž., Balijagić J., Petrović D., Jovančević M. (2012). Anthocyanins in indigenous and cultured fruit in Polimlje, North - East of Montenegro. Ag-riculture & Forestry, vol. 58, issue 4: 95–102, Pod-gorica.
Vauzour D., Rodriguez-Mateos, Corona G., Oruna-Concha M., Spencer J. P. E. (2010). Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients, 2, 1106–1131.
Von Baer D., Rentzsch M., Hitschfeld M. A., Mar-dones C., Vergara C., Winterhalter P. (2008). Rele-vance of chromatographic efficiency in varietal au-thenticity verification of red wines based on their an-thocyanin profiles: Interference of pyranoanthocya-nins formed during wine ageing. Anal. Chem. Acta, 621, 52–56.
Downloads
Published
Versions
- 15.08.2024 (2)
- 16.05.2024 (1)
Issue
Section
License
Copyright (c) 2024 Contributions, Section of Natural, Mathematical and Biotechnical Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.