• Rubin Gulaboski Faculty of Medical Sciences, Goce Delčev University, Štip, RN Macedonia Author



While we inhabit a macro-world, it is evident that our future will depend greatly on the tiniest of things. This is due to the fact that a majority of 21st-century sciences will be centered around materials with nanometer dimensions. Currently, we observe the significance of nanomaterials in facilitating the targeted delivery of active substances within the body. In the past two years, this has played a crucial role in combating the COVID-19 pandemic, with the assistance of vaccines containing graphene oxide nanoparticles that serve as carriers and enhancers for vaccine compounds. Fur-thermore, challenges related to drug delivery, such as poor water solubility and limited bioavailability, have already been overcome through the utilization of metal-based and carbon-based nanomaterials. Nanomedicine is poised to revo-lutionize the landscape of therapeutics and diagnostics. This brief review focuses on notable achievements in designing specific voltammetric biosensors using metallic nanoparticles and graphene-based nanomaterials. Metallic nanoparti-cles, particularly those based on silver and gold, along with graphene derivatives such as nanotubes, quantum dots, nanodiamonds, and fullerenes, exhibit remarkable physical and chemical properties. These include improved thermal stability, enhanced conductivity, and the ability to modify their surface area with various organic substrates. Notably, voltammetric sensors based on graphene nanostructures demonstrate high biocompatibility and superior selectivity in detecting important biological systems through voltammetry. The aim of this concise review is to highlight recent elec-trochemical advancements in nanosystems and present significant achievements of metallic nanoparticles and graphene-based nanomaterials as voltammetric biosensors.


R. G. Compton, C. E. Banks, Understanding Volt-ammetry, 3rd Edition, World Scientific Publishing Europe Ltd, 2018.

V. Mirceski, S. Komorsky-Lovric, M. Lovric, Square-wave Voltammetry-Theory and Application (F. Scholz, ed.), Springer Verlag, Berlin, Heidel-berg, 2007.

J. N. Butt, F. A. Armstrong, Voltammetry of adsorbed redox enzymes, in Bioinorganic electrochemistry (O. Hammerich, J. Ulstrup, eds), Springer, Netherlands, 2008.

A. J. Bard, L. R. Faulkner, Electrochemical Meth-ods: Fundamentals and Applications, 2nd edition, John Wiley&Sons Inc., New York, 2001.

J. Wang, Analytical Electrochemistry, 3rd edition, John Wiley&Sons Inc., New York, 2006.

C. G. Zoski, Handbook of Electrochemistry, Else-vier, 2007.

R. Chillawar, K. K. Tadi, R. V. Motghare, Volt-ammetric techniques at chemically modified elec-trodes, J. Anal. Chem., 70 (2015), pp. 399–418.

A. Chen, S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applica-tions, Chem. Soc. Rev., 42 (2013), pp. 5425–5438.

R. P. Feynman, There’s plenty of room at the bot-tom, Eng. Sci., 22 (1960), pp. 22–36.

N. Duran, P. D. Marcato, Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int. J. Food Sci. Technol., 48 (2013), pp. 1127–1134.

G. Cao, Nanostructures and nanomaterials: Synthesis, properties and applications, Singapore: Imperial College Press, 2004.

J. W. Schultze, A. Heidelberg, C. Rosenkranz, T. Schapers, G. Staikov, Principles of electrochemical nanotechnology and their application for materials and systems. Electrochim. Acta, 51 (2005), pp. 775–786.

Fundamentals of nanoparticles, (A. Barhoum, A. S. H. Makhlouf, eds.), Elsevier, 2018.

Inorganic Nanoparticles, Synthesis, applications, and perspectives, (C. Altavilla, E. Ciliberto, eds.), CRC Press, 2010.

Nanoparticles, workhorses of nanoscience, (C. de Mello Donega, ed.), Springer, Berlin, Heidelberg, 2014.

Nanoparticles: From theory to application, (G. Schmid, ed.), Wiley, 2006.

Nanoparticles in catalysis: Advances in synthesis and application, (K. Philippot, A. Roucoux eds.,), Wiley, 2021.

Handbook of Nanophysics, 1st edition, (K. D. Sat-tler, ed.), CRC Press, 2011.

Nanoparticles for biomedical applications, (E. J. Chung, L. Leon, C. Rinaldi, eds.), Elsevier, 2019.

C. S. Pundir, Enzyme nanoparticles: Preparation, characterization, properties and applications (Mi-cro and nano technologies), 1st edition, Elsevier, 2015.

S. E. F. Kleijn, S. C. S. Lai, M. T. M Koper, P. R. Unwin, Electrochemistry of nanoparticles, Angew. Chem. Int. Ed., 53 (2014), pp. 3558–3586.

J. J. Jarju, M. C. Figueiredo, Y. V. Kolenko, Chap-ter 8-Electrocatalysis using nanomaterials, (A. J. Wain, E. J. F. Dickinson, eds.), Frontiers of Nano-science, Elsevier, 18 (2021), pp. 343–420.

O. Lebedeva, D. Kultin, L. Kustov, Electro-chemical synthesis of unique nanomaterials in ionic liquids, Nanomaterials, 11 (2021), pp. 3270. DOI: 10.3390/nano11123270

S-M. Lu, Y-Y. Peng, Y-L. Ying, Y-T. Long, Electrochemical sensing at a confined space, Anal. Chem., 92 (2020), pp. 5621–5644.

Ib. Khan, K. Saeed, Id. Khan, Nanoparticles: Prop-erties, applications and toxicities, Arab. J. Chem., 12 (2019), pp. 908–931.

E. Katelhon, L. Chen, R. G. Compton, Nanoparticle Electrocatalysis: Unscrambling illusory inhibition and catalysis, Appl. Mater. Today, 15 (2019), pp. 139–144.

T. Han, J. Jin, C. Wang, Y. Sun, Y. Zhang, Y. Liu, Ag nanoparticles-modified 3D graphene foam for binder-free electrodes of electrochemical sensors, Nanomaterials, 7 (2017).


U. T. Khatoon, G. V. S. N. Rao, K. M. Mantravadi, Y. Oztekin, Strategies to synthesize various nanostructures of silver and their applications-A review, RSC Adv. 8 (2018), pp. 19739–19753.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, F. Luan, A Review on functionalized gold nano-particles for biosensing applications, Plasmonics, 6 (2011), pp. 491–506.

S. Alex, A. Tiwari, Functionalized Gold Nano-particles: Synthesis, Properties and Applications-A Review, J. Nanosci. Nanotechnol. 15 (2015), pp. 1869–1894.

S. J. Amina, B. Guo, A Review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle, Int. J. Nanomedicine, 15 (2020), pp. 9823–9857.

M. T. Castaneda, S. Alegret, A. Merkoci, Electro-chemical Sensing of DNA using gold nanoparticles, Electroanalysis, 19 (2007), pp. 743–753.

S. Sawan, R. Maalouf, A. Errachid, N. Jaffrezic-Renault, Metal and Metal Oxide Nanoparticles in the Voltammetric Detection of Heavy Metals: A Review, TrAC-Trend. Anal. Chem., 131 (2020), 116014.

A. S. Agnihotri, A. Varghese, M. Nidhin, Transition metal oxides in electrochemical and bio sensing: A state of art, App. Surf. Sci. Adv., 4 (2021), 100072.

E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S. G. Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Dona-to, G. Neri, Metal-oxide based nanomaterials: Syn-thesis, characterization and their applications in electrical and electrochemical sensors, Sensors, 21 (2021), 2494. s21072494

A. Balakrishnan, J. D. Groeneveld, S. Pokhrel, L. Madler, Metal sulfide nanoparticles: Precursor chemistry, Eur. J. Chem., 27 (2021), pp. 6390–6406.

L. Wang, J. Bai, P. Huang, H. Wang, L. Zhang, Y. Zhao, Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine, Electrochem. Commun., 8 (2006), pp. 1035–1040.

R. Petrucci, M. Bortolami, P. Di Matteo, A. Curulli, Gold nanomaterials-based electrochemical sensors and biosensors for phenolic antioxidants detection: Recent advances, Nanomaterials 12 (2022), 959 DOI: 10.3390/nano12060959

D. O. Pervezentseva, A. V. Korshunov, E. V. Gorchakov, V. I. Birmatov, I. E. Phedorov, Au-nanoparticles based sensors for voltammetric de-termination of glutathione, Curr. Anal. Chem., 13 (2017), pp. 225–230.

B. R. Patel, M. Noroozifar, K. Kerman, Nanocom-posite-based sensors for voltammetric detection of hazardous phenolic pollutants in water, J. Electro-chem. Soc., 167 (2020), 037568

L. Chen, H. Xie, J. Li, Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. J. Solid State Electrochem., 16 (2012), pp. 3323–3329.

Z. Huang, A. Zhang, Q. Zhang, S. Pan, D. Cui, Electrochemical biosensor based on Dewdrop-like Platinum nanoparticles-decorated silver nanoflowers nanocomposites for H2O2 and glucose detection, J. Electrochem. Soc., 166 (2019) pp. B1138–B1145. [43] Z. Lu, L. Wu, J. Zhang, W. Dai, G. Mo, J. Ye, Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel, Mater. Sci. Eng. C, 102 (2019), pp. 708–717.

Z. Li, Y. Chen, Y. Xin, Z. Zhang, Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam, Sci. Rep., 5 (2015) 1–8.

X. Li, X. Du, Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose, Sensors Actuators B: Chem., 239 (2017), pp. 536–543.

Y. Zhang, B. Huang, J. Ye, J. Ye, A sensitive and selective amperometric hydrazine sensor based on palladium nanoparticles loaded on cobalt-wrapped nitrogen-doped carbon nanotubes, J. Electroanal. Chem., 801 (2017), pp. 215–223.

R. Gulaboski, M. Chirea, C. M. Pereira, M. N. D. S. Cordeiro, R. B. Costa, A. F. Silva, Probing of the voltammetric features of graphite electrodes modified with mercaptoundecanoic acid stabilized gold nanoparticles, J. Phys. Chem. C, 112 (2008), pp. 2428–2435 [48] V. Mirčeski, R. Gulaboski, Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode, J. Phys. Chem. B, 110 (2006), pp. 2812–2820.

J. W. Shin, J. Yoon, M. Shin, J. W. Choi, Electro-chemical dopamine biosensor composed of silver encapsulated MoS2 hybrid nanoparticle, Biotechnol. Bioprocess. Eng., 24 (2019), pp. 135–144.

N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. A. Tayebi, novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose, Anal. Biochem., 519 (2017), pp. 19–26.

A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007), pp. 183–191.

D. A. C. Brownson, C. E. Banks, Graphene electro-chemistry: An overview of potential applications, The Analyst, 135 (2010), pp. 2768–2778.

S. Rathinavel, K. Priyadharshini, D. Panda, A re-view on carbon nanotube: An overview of synthe-sis, properties, functionalization, characterization, and the application, Mat. Sci. Eng. B, 268 (2012), pp. 115095

S. Mallakpour, S. Soltanian, Surface functionaliza-tion of carbon nanotubes: fabrication and applica-tions, RSC Adv., 6 (2016), pp. 109916–109935.

R. Dubey, D. Dutta, A. Sarkar, P. Chatopadhyay, Functionalized carbon nanotubes: synthesis, prop-erties and applications in water purification, drug delivery, and material and biomedical sciences, Nanoscale Adv., 3 (2021), pp. 5722–5744.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and ap-plications, Chem. Rev., 112 (2012), pp. 6156–6214.

M. M. Barsan, M. E. Ghica, C. M. A. Brett, Elec-trochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review, Anal. Chim. Acta, 881 (2015), pp. 1–23.

R. Kour, S. Arya, S-J. Young, V. Gupta, P. Bandhoria, A. Khosla, Recent advances in carbon nanomaterials as electrochemical biosensors, J. Electrochem. Soc., 167 (2020), 037555.

J. Wang, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis, 17 (2005), pp. 7–14.

A. Casanova, J. Iniesta, A. Gomes-Berenguer, Re-cent progress in development of porous carbon-based electrodes for sensing applications, The Ana-lyst, 147 (2022), pp. 767–783.

S. A. David, R. Rajkumar, P. Karpagavinayagam, J. Fernando, C. Vedhi, Sustainable carbon nano-material-based sensors: Future vision for the next 20 years, Carbon Nanomaterials-Based Sensors, 1 (2022), pp. 429–443, 10.1016/B978-0-323-91174-0.00011-1.

A. T. Lawal, H. S. Bolarinwa, M. D. Adeoye, I. O. Abdulsalami, L. O. Animasahun, K. A. Alabi, Pro-gress in carbon nanotube-based electrochemical bi-osensors-A review, FUJNAS, 8 (2019), pp. 38–74.

P. Das, M. Das, S. R. Chinnadayyala, I. M. Singha, P. Goswami, Recent advances on developing 3rd generation enzyme electrode for biosensor appli-cations, Biosens. Bioelectron. 79 (2016), pp. 386–397.

S. Gupta, C. N. Murthy, C. Ratna Prabha, Recent advances in carbon nanotube based electrochemical biosensors, Int. J. Biol. Macromol. 108 (2018), pp. 687–703.

G. S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements, Biosens. Bioelectron., 20 (2005), pp. 2388–2403.

S. Berger, M. Berger, C. Bantz, M. Maskos, E. Wagner, performance of nanoparticles for biomedi-cal applications: The in vivo/in vitro discrepancy, Biophysics Rev., 3 (2022), 011303.

D. C. Ferrier, K. C. Honeychurch, Carbon nanotube (CNT)-based biosensors, Biosensors, 11 (2021), 486.

D. Bhatnagar, S. K. Tuteja, R. Rastogi, L. M. Bharadwaj, Label-Free Detection of Hemoglobin Using MWNT-Embedded Screen-Printed Electrode, BioNanoScience, 3 (2013), pp. 223–231.

A. P. Periasamy, Y. J. Chang, S. M. Chen, Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode, Bioelectrochem., 80 (2011), pp. 114–120.

Y. C. Tsai, J. D. Huang, C. C. Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)– multiwalledcarbon nanotube–alcohol dehydrogenase biocomposite, Biosens. Bioelectron., 22 (2007), pp. 3051– 3056.

J. N. Ashby, R. P. Ramasamy, Molecularly Tethered Cholesterol Oxidase on Multiwall Carbon Nanotubes for Indirect Detection of Cholesterol, ECS Trans., 69 (2015), pp. 1–9.

B. Dalkıran, P. E. Erden, E. Kilic, Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7, 7, 8, 8-tetracyanoquinodimethane composite for the determination of xanthine, Talanta, 167 (2017), pp. 286–295.

A. K. Deb, S. C. Das, A. Saha, M. B. Wayu, M. H. Marksberry, R. J. Baltz, C. C. Chusuei, Ascorbic acid, acetaminophen, and hydrogen peroxide detection using a dendrimer-encapsulated Pt nanoparticle carbon nanotube composite, J. App. Electrochem., 46 (2016), pp. 289–298.

S. Draminska, R. Bilewicz, Bienzymatic media-torless sensing of total hydrogen peroxide with catalase and multi-copper enzyme co-adsorbed at carbon nanotube-modified electrodes. Sensors and Actuators, B: Chemical, 248 (2017), pp. 493–499.

B. Ertek, Y. Dilgin, Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanotube nanocomposite electrode, Bioelectro-chem., 112 (2016) pp. 138–144.

J. Huan, Y. Li, J. Feng, M. Li, P. Wang, Z. Chen, Y. Dong, A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide, J. Electroanal. Chem., 786 (2017), pp. 112–119.

A. Quang Dao, D. M. Nguyen, T. T. T. Toan, The modified glassy carbon electrode by MWCNTs-PLL to detect both paracetamol and ibuprofen in human biological fluid, J. Electrochem. Soc., 169 (2022), 057525 10.1149/1945-7111/ac6f89

G. X. Ma, T. H. Lu, Y. Y. Xia, Direct electrochem-istry and bioelectrocatalysis of hemoglobin immo-bilized on carbon black, Bioelectrochem., 71(2007), pp. 180–185.

E. V. Suprun, F. Arduini, D. Moscone, G. Palleschi, V. V. Shumyantseva, A. I. Archakov, Di-rect electrochemistry of hem proteins on electrodes modified with diododecylmethyl ammonium bro-mide and carbon black, Electroanalysis, 24 (2012), pp. 1923–1931.







Most read articles by the same author(s)