IN VITRO PATHOGENICITY TESTS OF SEVEN PHYTOPHTHORA SPECIES ON EUROPEAN CHESTNUT

Authors

  • Mihajlo Risteski Landscape Architecture and Environmental Engineering, Hans Em Faculty of Forest Sciences, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author
  • Biljana Kuzmanovska Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author
  • Katerina Bandzo Oreshkovikj Institute of Agriculture, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author
  • Vladimir Tanovski Landscape Architecture and Environmental Engineering, Hans Em Faculty of Forest Sciences, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author
  • Rade Rusevski Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author
  • Jakob Kjiprovski Landscape Architecture and Environmental Engineering, Hans Em Faculty of Forest Sciences, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author
  • Kiril Sotirovski Landscape Architecture and Environmental Engineering, Hans Em Faculty of Forest Sciences, Ss. Cyril and Methodius University in Skopje, RN Macedonia Author

DOI:

https://doi.org/10.20903/masa/nmbsci.2023.44.36

Abstract

In this study, pathogenicity tests were conducted on seven Phytophthora species previously recorded on various tree species in North Macedonia. Single representative isolates of P. cactorum, P. colocasiae, P. taxon walnut, P. cinnamomi, P. gonapodyides, P. inundata, and P. cambivora were inoculated onto European chestnut twigs, with 40 replicates per isolate, categorized by two twig thicknesses. The results revealed a range of necrotic lesion lengths, from 1.6 to 5.9 cm, highlighting the varying impacts of the pathogen species on chestnut twigs. A two-way ANOVA indicated significant differences in lesion lengths between the two twig thickness categories across all Phytophthora species. Overall, P. inundata caused the shortest total lesion lengths, while P. cactorum caused the longest. Notably, lesion length variability for P. colocasiae was consistent across both twig thicknesses, whereas P. inundata showed the greatest variability between the two thickness categories.

References

J. B. Ristaino, M. L. Gumpertz, New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora, Annu. Rev. Phytopathol., 38 (2000), pp. 541−576.

P. Scott, M. K. F. Bader, T. Burgess, G. Hardy, N. Williams, Global biogeography and invasion risk of the plant pathogen genus Phytophthora, Environ. Sci. Policy, 101 (2019), pp. 175−182.

K. H. Lamour, S. Kamoun, Phytophthora pathogens: A review of their biology, ecology, and mana-gement., Annu. Rev. Phytopathol., 47 (2009), pp. 1−22.

C. M. Brasier, The biosecurity threat to the UK and global environment from international trade in plants, Plant Pathol., 57 (2008), pp. 792−808.

D. Erwin, O. Ribeiro, Phytophthora diseases worldwide, APS Press, St. Paul, Minnesota, 1996, p. 592.

T. Jung, L. Orlikowski, B. Henricot, P. Abad‐Campos, A. G. Aday, O. Aguín Casal, J. Bakonyi, S. O. Cacciola, T. Cech, D. Chavarriaga, T. Corcobado, A. Cravador, T. Decourcelle, G. Denton, S. Diamandis, H. T. Doğmuş‐Lehtijärvi, A. Franceschini, B. Ginetti, S. Green, M. Glavendekić, J. Hantula, G. Hartmann, M. Herrero, D. Ivic, M. Horta Jung, A. Lilja, N. Keca, V. Kramarets, A. Lyubenova, H. Machado, G. Magnano di San Lio, P. J. Mansilla Vázquez, B. Marçais, I. Matsiakh, I. Milenkovic, S. Moricca, Z. Á. Nagy, J. Nechwatal, C. Olsson, T. Oszako, A. Pane, E. J. Paplomatas, C. Pintos Varela, S. Prospero, C. Rial Martínez, D. Rigling, C. Robin, A. Rytkönen, M. E. Sánchez, A. V. Sanz Ros, B. Scanu, A. Schlenzig, J. Schumacher, S. Slavov, A. Solla, E. Sousa, J. Stenlid, V. Talgø, Z. Tomic, P. Tsopelas, A. Vannini, A. M. Vettraino, M. Wenneker, S. Woodward, A. Peréz‐Sierra, M. L. Deprez‐Loustau, Widespread Phytophthora infestations in European nurseries put forest, semi‐natural and horticultural ecosystems at high risk of Phytophthora diseases, Forest Pathol., 46 (2015), pp. 134−163.

C. M. Brasier, Phytophthora biodiversity: how many Phytophthora species are there?, in: Phytophthoras in Forests and Natural Ecosystems, E. Goheen, S. Frankel (Eds), USDA Forest Service, Albany, USA, pp. 101−115, 2009.

T. Jung, A. Pérez-Sierra, A. Durán, M. H. Jung, Y. Balci, B. Scanu, Canker and decline diseases caused by soil-and airborne Phytophthora species in forests and woodlands, Persoonia-Mol. Phylogeny Evol. Fungi, 40 (2018), pp. 182−220.

P. H. Tsao, Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected 1, EPPO Bull., 20 (1990), pp. 11−17.

T. Jung, L. Orlikowski, B. Henricot, P. A-bad‐Campos, A. Aday, O. Aguín Casal, J. Bako-nyi, S. Cacciola, T. Cech, D. Chavarriaga, Widespread Phytophthora infestations in European nurseries put forest, semi‐natural and horticultural ecosystems at high risk of Phytophthora diseases, Forest Pathol., 46 (2016), pp. 134−163.

S. Woodward, R. C. Beram, H. T. Doğmuş, Drivers of forest pathogen invasions: The roles of global trade and climate change, South-East Eur. For. Sci. SEEFOR, 13 (2022), pp. 1−18.

E. M. Hansen, P. W. Reeser, W. Sutton, Phyto-phthora beyond agriculture, Annu. Rev. Phyto-pathol., 50 (2012), p. 359−378.

N. J. Grünwald, E. M. Goss, C. M. Press, Phyto-phthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals, Mol. Plant Pathol., 9 (2008), pp. 729−740.

K. Yoshida, V. J. Schuenemann, L. M. Cano, M. Pais, B. Mishra, R. Sharma, C. Lanz, F. N. Martin, S. Kamoun, J. Krause, The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine, Elife, 2 (2013), p. e00731.

E. M. Hansen, Phytophthora species emerging as pathogens of forest trees, Curr. For. Rep., 1 (2015), pp. 16−24.

T. I. Burgess, J. K. Scott, K. L. Mcdougall, M. J. Stukely, C. Crane, W. A. Dunstan, F. Brigg, V. Andjic, D. White, T. Rudman, Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens, Global Change Biol., 23 (2017), pp. 1661−1674.

C. M. Brasier, F. Robredo, J. Ferraz, Evidence for Phytophthora cinnamomi involvement in Iberian oak decline, Plant Pathol., 42 (1993), pp. 140−145.

T. Jung, H. Blaschke, P. Neumann, Isolation, iden-tification and pathogenicity of Phytophthora species from declining oak stands, Eur. J. For. Pathol., 26 (1996), pp. 253−272.

D. M. Rizzo, M. Garbelotto, Sudden oak death: endangering California and Oregon forest eco-systems, Front. Ecol. Environ., 1 (2003), pp. 197−204.

C. M. Brasier, S. Denman, A. Brown, J. Webber, Sudden oak death (Phytophthora ramorum) dis-covered on trees in Europe, Mycol. Res., 108 (2004), pp. 1108−1110.

J. F. Webber; Status of Phytophthora ramorum and P. kernoviae in Europe, Third Science Sympo-sium – Sudden Oak Death (Proceedings), Albany, USA, 2008, pp. 19−26.

C. M. Brasier, Phytophthora species: A review of their biology, ecology and pathogenicity, Plant Pathol., 49 (2000), p. 137−151.

B. M. Tyler, S. Tripathy, X. Zhang, P. Dehal, R. H. Y. Jiang, A. Aerts, F. D. Arredondo, L. Baxter, D. Bensasson, J. L. Beynon, J. Chapman, C. M. B. Damasceno, A. E. Dorrance, D. Dou, A. W. Dickerman, I. L. Dubchak, M. Garbelotto, M. Gijzen, S. G. Gordon, F. Govers, N. J. Grunwald, W. Huang, K. L. Ivors, R. W. Jones, S. Kamoun, K. Krampis, K. H. Lamour, M.-K. Lee, W. H. McDonald, M. n. Medina, H. J. G. Meijer, E. K. Nordberg, D. J. Maclean, M. D. Ospina-Giraldo, P. F. Morris, V. Phuntumart, N. H. Putnam, S. Rash, J. K. C. Rose, Y. Sakihama, A. A. Salamov, A. Savidor, C. F. Scheuring, B. M. Smith, B. W. S. Sobral, A. Terry, T. A. Torto-Alalibo, J. Win, Z. Xu, H. Zhang, I. V. Grigoriev, D. S. Rokhsar, J. L. Boore, Phytophthora genome sequences uncover evolutionary origins and mechanisms of patho-genesis, Science, 313 (2006), pp. 1261−1266.

S. Kamoun, A catalogue of the effector secretome of plant pathogenic oomycetes, Annu. Rev. Phyto-pathol., 44 (2006), pp. 41−60.

B. J. Haas, S. Kamoun, M. C. Zody, R. H. Jiang, R. E. Handsaker, L. M. Cano, M. Grabherr, C. D. Kodira, S. Raffaele, T. Torto-Alalibo, Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans, Nature, 461 (2009), p. 393−398.

N. J. Grünwald, B. A. McDonald, M. G. Milgroom, Population genomics of fungal and oomycete pathogens, Annu. Rev. Phytopathol., 54 (2016), p. 323−346.

S. Kamoun, Groovy times: filamentous pathogen effectors revealed, Curr. Opin. Plant Biol., 10 (2007), pp. 358−365.

W. Fry, P. Birch, H. Judelson, N. Grünwald, G. Danies, K. Everts, A. Gevens, B. Gugino, D. Johnson, S. Johnson, Five reasons to consider Phytophthora infestans a reemerging pathogen, Phytopathology, 105 (2015), pp. 966−981.

B. M. Tyler, Phytophthora sojae: root rot patho-gen of soybean and model oomycete, Mol. Plant Pathol., 8 (2007), pp. 1−8.

S. Dong, G. Kong, D. Qutob, X. Yu, J. Tang, J. Kang, T. Dai, H. Wang, M. Gijzen, Y. Wang, The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity, Mol. Plant Microbe Interact., 25 (2012), pp. 896−909.

M. Risteski; Distribution and diversity of patho-genic Phytophthora species in the Republic of Macedonia, Doctoral thesis, Ss Cyril and Methodius University in Skopje, Faculty of Forestry, Skopje, p. 143, 2018.

T. Jung, J. Nechwatal, Phytophthora gallica sp. nov., a new species from rhizosphere soil of dec-lining oak and reed stands in France and Germany, Mycol. Res., 112 (2008), pp. 1195−1205.

J. Hantula, A. Lilja, H. Nuorteva, P. Parikka, S. Werres, Pathogenicity, morphology and genetic variation of Phytophthora cactorum from straw-berry, apple, rhododendron, and silver birch, Mycol. Res., 104 (2000), pp. 1062−1068.

A. Vannini, A. M. Vettraino, Ink disease in chest-nuts: impact on the European chestnut, For. Snow Landsc. Res, 76 (2001), pp. 345−350.

A. Lilja, R. Rikala, A. Hietala, R. Heinonen, Stem lesions on Betula pendula seedlings in Finnish forest nurseries and the pathogenicity of Phyto-phthora cactorum, Eur. J. For. Pathol., 26 (1996), pp. 89−96.

A. Lilja, R. Karjalainen, P. Parikka, K. Kam-miovirta, H. Nuorteva, Pathogenicity and genetic variation of Phytophthora cactorum from silver birch and strawberry, Eur. J. Plant Pathol., 104 (1998), pp. 529−535.

G. Waterhouse, J. Waterston, Phytophthora cacto-rum, CMI Descriptions of pathogenic fungi and bacteria, 1966, p. 2.

C. M. Brasier, P. Hamm, E. Hansen, Phytophthora diseases: Status of P. gonapodyides, P. drechsleri, and P. cryptogea, J. For. Res., (1989), pp. 45−46.

C. M. Brasier, D. E. L. Cooke, J. M. Duncan, E. M. Hansen, Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile, Mycol. Res., 107 (2003), pp. 277−290.

L. P. Kroon, F. T. Bakker, G. B. M. van den Bosch, P. J. M. Bonants, W. G. Flier, Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences, Fungal Genet. Biol., 41 (2004), pp. 766−782.

B. Ginetti, A. Ragazzi, S. Moricca, First report of Phytophthora taxon walnut in Lombardy, North Italy, Plant Dis., 98 (2014), pp. 424−424.

Published

14.11.2025

Most read articles by the same author(s)

1 2 3 4 > >>